scholarly journals Disrupted Dynamic Functional Connectivity of the Visual Network in Episodic Patients with Migraine without Aura

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Heng-Le Wei ◽  
Tian Tian ◽  
Gang-Ping Zhou ◽  
Jin-Jin Wang ◽  
Xi Guo ◽  
...  

Background. Visual symptoms are common in patients with migraine, even in interictal periods. The purpose was to assess the association between dynamic functional connectivity (dFC) of the visual cortex and clinical characteristics in migraine without aura (MwoA) patients. Methods. We enrolled fifty-five MwoA patients as well as fifty gender- and age-matched healthy controls. Regional visual cortex alterations were investigated using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF). Then, significant regions were selected as seeds for conducting dFC between the visual cortex and the whole brain. Results. Relative to healthy controls, MwoA patients exhibited decreased ReHo and ALFF values in the right lingual gyrus (LG) and increased ALFF values in the prefrontal cortex. The right LG showed abnormal dFC within the visual cortex and with other core brain networks. Additionally, ReHo values for the right LG were correlated with duration of disease and ALFF values of the right inferior frontal gyrus and middle frontal gyrus were correlated with headache frequency and anxiety scores, respectively. Moreover, the abnormal dFC of the right LG with bilateral cuneus was positively correlated with anxiety scores. Conclusions. The dFC abnormalities of the visual cortex may be involved in pain integration with multinetworks and associated with anxiety disorder in episodic MwoA patients.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Heng-Le Wei ◽  
Jian Li ◽  
Xi Guo ◽  
Gang-Ping Zhou ◽  
Jin-Jin Wang ◽  
...  

Abstract Background Migraine is a common neurological disease that is often accompanied by psychiatric comorbidities. However, the relationship between abnormal brain function and psychiatric comorbidities in migraine patients remains largely unclear. Therefore, the present study sought to explore the correlations between the resting-state functional deficits and psychiatric comorbidities in migraine without aura (MwoA) patients. Methods Resting-state functional magnetic resonance images were obtained. In addition, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were obtained. Thereafter regional abnormalities in MwoA patients with and without anxiety (MwoA-A and MwoA-OA) were chosen as seeds to conduct functional connectivity (FC) analysis. Results Compared to the healthy controls (HCs), the MwoA-A and MwoA-OA patients had abnormal ALFF and ReHo values in the right lingual gyrus (LG). They also had abnormal FC of the right LG with the ipsilateral superior frontal gyrus (SFG) and middle cingulate cortex (MCC). Additionally, the MwoA-A patients showed higher ReHo values in the left posterior intraparietal sulcus (pIPS) and abnormal FC of the right LG with ipsilateral pIPS and primary visual cortex, compared to the MwoA-OA patients. Moreover, the MwoA-OA patients showed an increase in the FC with the right posterior cingulate cortex/precuneus (PCC/PCUN), left middle frontal gyrus (MFG) and left inferior temporal gyrus (ITG) relative to the HCs. Furthermore, the ALFF values of the right LG positively were correlated with anxiety scores in MwoA-A patients. The abnormal LG-related FCs with the PCC/PCUN, MFG and ITG were negatively associated with the frequency of headaches in MwoA-OA patients. Conclusions This study identified abnormal visual FC along with other core networks differentiating anxiety comorbidity from MwoA. This may therefore enhance the understanding of the neuropsychological basis of psychiatric comorbidities and provide novel insights that may help in the discovery of new marks or even treatment targets.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Lv Han ◽  
Zhao Pengfei ◽  
Liu Chunli ◽  
Wang Zhaodi ◽  
Wang Xindi ◽  
...  

Abstract To determine the neural mechanism underlying the effects of sound therapy on tinnitus, we hypothesize that sound therapy may be effective by modulating both local neural activity and functional connectivity that is associated with auditory perception, auditory information storage or emotional processing. In this prospective observational study, 30 tinnitus patients underwent resting-state functional magnetic resonance imaging scans at baseline and after 12 weeks of sound therapy. Thirty-two age- and gender-matched healthy controls also underwent two scans over a 12-week interval; 30 of these healthy controls were enrolled for data analysis. The amplitude of low-frequency fluctuation was analysed, and seed-based functional connectivity measures were shown to significantly alter spontaneous local brain activity and its connections to other brain regions. Interaction effects between the two groups and the two scans in local neural activity as assessed by the amplitude of low-frequency fluctuation were observed in the left parahippocampal gyrus and the right Heschl's gyrus. Importantly, local functional activity in the left parahippocampal gyrus in the patient group was significantly higher than that in the healthy controls at baseline and was reduced to relatively normal levels after treatment. Conversely, activity in the right Heschl's gyrus was significantly increased and extended beyond a relatively normal range after sound therapy. These changes were found to be positively correlated with tinnitus relief. The functional connectivity between the left parahippocampal gyrus and the cingulate cortex was higher in tinnitus patients after treatment. The alterations of local activity and functional connectivity in the left parahippocampal gyrus and right Heschl’s gyrus were associated with tinnitus relief. Resting-state functional magnetic resonance imaging can provide functional information to explain and ‘visualize’ the mechanism underlying the effect of sound therapy on the brain.


2018 ◽  
Vol 51 (6) ◽  
pp. 2694-2703 ◽  
Author(s):  
Wenqing Xia ◽  
Yu-Chen Chen ◽  
Yong Luo ◽  
Dan-Feng Zhang ◽  
Huiyou Chen ◽  
...  

Background/Aims: Type 1 diabetes mellitus (T1DM) has been proven to be associated with an increased risk of cognitive dysfunction. In this study, we aimed to investigate whether disrupted spontaneous activity and functional connectivity (FC) exist in T1DM patients using resting-state functional magnetic resonance imaging (rs-fMRI) and to detect the relationships of these parameters with cognitive impairment. Methods: T1DM patients (n=35) were compared with age-, sex-, and education level-matched healthy controls (n=50) through rs-fMRI. Using rs-fMRI professional software, we calculated the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and seed-based FC in the posterior cingulate cortex (PCC) to measure the spontaneous neural activity in the groups. The relationship between rs-fMRI data and cognitive performance was further investigated. Results: Compared with the healthy controls, T1DM patients showed significantly decreased ALFF values in the PCC and right inferior frontal gyrus (IFG), decreased ReHo values in the right middle frontal gyrus (MFG) and reduced FC between the PCC and the right MFG. Furthermore, a positive correlation was found between decreased ALFF values in the PCC and Rey-Osterrieth Complex Figure Test (CFT)-delay scores in T1DM patients (r=0.394, p=0.026). Moreover, the Trail Making Test-B (TMT-B) scores showed negative correlations with decreased ReHo values in the right MFG (r=-0.468, p=0.007) and reduced FC between the PCC and right MFG (r=-0.425, p=0.015). Conclusion: Our combined analyses revealed decreased spontaneous activity and FC mainly within the default mode network, which was correlated with specific impaired cognitive functioning in T1DM. This study thus elucidates the neurophysiological mechanisms underlying T1DM-related cognitive impairment and may serve as a reference for future clinical diagnosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yin Qin ◽  
Xiaoying Liu ◽  
Xiaoping Guo ◽  
Minhua Liu ◽  
Hui Li ◽  
...  

Background and Purpose: Strokes consistently result in brain network dysfunction. Previous studies have focused on the resting-state characteristics over the study period, while dynamic recombination remains largely unknown. Thus, we explored differences in dynamics between brain networks in patients who experienced subcortical stroke and the effects of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) on dynamic functional connectivity (dFC).Methods: A total of 41 patients with subcortical stroke were randomly divided into the LF-rTMS (n = 23) and the sham stimulation groups (n = 18). Resting-state functional MRI data were collected before (1 month after stroke) and after (3 months after stroke) treatment; a total of 20 age- and sex-matched healthy controls were also included. An independent component analysis, sliding window approach, and k-means clustering were used to identify different functional networks, estimate dFC matrices, and analyze dFC states before treatment. We further assessed the effect of LF-rTMS on dFCs in patients with subcortical stroke.Results: Compared to healthy controls, patients with stroke spent significantly more time in state I [p = 0.043, effect size (ES) = 0.64] and exhibited shortened stay in state II (p = 0.015, ES = 0.78); the dwell time gradually returned to normal after LF-rTMS treatment (p = 0.015, ES = 0.55). Changes in dwell time before and after LF-rTMS treatment were positively correlated with changes in the Fugl–Meyer Assessment for Upper Extremity (pr = 0.48, p = 0.028). Moreover, patients with stroke had decreased dFCs between the sensorimotor and cognitive control domains, yet connectivity within the cognitive control network increased. These abnormalities were partially improved after LF-rTMS treatment.Conclusion: Abnormal changes were noted in temporal and spatial characteristics of sensorimotor domains and cognitive control domains of patients who experience subcortical stroke; LF-rTMS can promote the partial recovery of dFC. These findings offer new insight into the dynamic neural mechanisms underlying effect of functional recombination and rTMS in subcortical stroke.Registration:http://www.chictr.org.cn/index.aspx, Unique.identifier: ChiCTR1800019452.


2021 ◽  
Author(s):  
Heng-Le Wei ◽  
Jian Li ◽  
Xi Guo ◽  
Gang-Ping Zhou ◽  
Jin-Jin Wang ◽  
...  

Abstract Background: Migraine is a common neurological disease that is often accompanied by psychiatric comorbidities. However, the relationship between abnormal brain function and psychiatric comorbidities in migraine patients remains largely unclear. Therefore, the present study sought to explore the correlations between the resting-state functional deficits and psychiatric comorbidities in migraine without aura (MwoA) patients.Methods: Resting-state functional magnetic resonance images were obtained. In addition, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were obtained. Thereafter regional abnormalities in MwoA patients with and without anxiety (MwoA-A and MwoA-OA) were chosen as seeds to conduct functional connectivity (FC) analysis.Results: Compared to the healthy controls (HCs), the MwoA-A and MwoA-OA patients had abnormal ALFF and ReHo values in the right lingual gyrus (LG). They also had abnormal FC of the right LG with the ipsilateral superior frontal gyrus (SFG) and middle cingulate cortex (MCC). Additionally, the MwoA-A patients showed higher ReHo values in the left posterior intraparietal sulcus (pIPS) and abnormal FC of the right LG with ipsilateral pIPS and primary visual cortex, compared to the MwoA-OA patients. Moreover, the MwoA-OA patients showed an increase in the FC with the right posterior cingulate cortex/precuneus (PCC/PCUN), left middle frontal gyrus (MFG) and left inferior temporal gyrus (ITG) relative to the HCs. Furthermore, the ALFF values of the right LG positively were correlated with anxiety scores in MwoA-A patients. The abnormal LG-related FCs with the PCC/PCUN, MFG and ITG were negatively associated with the frequency of headaches in MwoA-OA patients.Conclusions: This study identified abnormal visual FC along with other core networks differentiating anxiety comorbidity from MwoA. This may therefore enhance the understanding of the neuropsychological basis of psychiatric comorbidities and provide novel insights that may help in the discovery of new marks or even treatment targets.


2021 ◽  
Vol 11 (23) ◽  
pp. 11392
Author(s):  
Charles Okanda Nyatega ◽  
Li Qiang ◽  
Mohammed Jajere Adamu ◽  
Ayesha Younis ◽  
Halima Bello Kawuwa

Objective: Schizophrenia (SZ) is a functional mental condition that has a significant impact on patients’ social lives. As a result, accurate diagnosis of SZ has attracted researchers’ interest. Based on previous research, resting-state functional magnetic resonance imaging (rsfMRI) reported neural alterations in SZ. In this study, we attempted to investigate if dynamic functional connectivity (dFC) could reveal changes in temporal interactions between SZ patients and healthy controls (HC) beyond static functional connectivity (sFC) in the cuneus, using the publicly available COBRE dataset. Methods: Sliding windows were applied to 72 SZ patients’ and 74 healthy controls’ (HC) rsfMRI data to generate temporal correlation maps and, finally, evaluate mean strength (dFC-Str), variability (dFC-SD and ALFF) in each window, and the dwelling time. The difference in functional connectivity (FC) of the cuneus between two groups was compared using a two-sample t-test. Results: Our findings demonstrated decreased mean strength connectivity between the cuneus and calcarine, the cuneus and lingual gyrus, and between the cuneus and middle temporal gyrus (TPOmid) in subjects with SZ. Moreover, no difference was detected in variability (standard deviation and the amplitude of low-frequency fluctuation), the dwelling times of all states, or static functional connectivity (sFC) between the groups. Conclusions: Our verdict suggest that dynamic functional connectivity analyses may play crucial roles in unveiling abnormal patterns that would be obscured in static functional connectivity, providing promising impetus for understanding schizophrenia disease.


2018 ◽  
Vol 1 ◽  
pp. 251581631880482 ◽  
Author(s):  
Marco Lisicki ◽  
Kevin D’Ostilio ◽  
Gianluca Coppola ◽  
Alain Maertens de Noordhout ◽  
Vincenzo Parisi ◽  
...  

Rather than a localized alteration, increased visual reactivity in migraine patients seems to result from a complex interaction between several brain structures, mostly involving the ventral attention network. The hub of this network is the right temporo-parietal junction. In this report, complementing our previous findings, we describe the differences in seed-to-voxel resting-state functional connectivity seeded in the right temporo-parietal junction (right angular gyrus) between migraine patients and healthy controls. Resting-state functional MRIs of episodic migraine without aura patients in the interictal period ( n = 19) and matched healthy controls ( n = 19) were analysed. With the seed placed in the right temporo-parietal junction (right angular gyrus), seed-to-voxel connectivity was compared between groups. Electrophysiological, voxel-based morphometry (both groups) and specific region of interest (ROI)-to-ROI functional connectivity (migraine patients) data have already been published. Migraine patients showed a higher positive interaction between the right temporo-parietal junction and both temporal poles and a higher negative interaction between this same region and bilateral areas of the visual cortex. On the basis of our results, and because of their established properties as multisensory integration hubs, it is likely that the right temporo-parietal junction and both temporal poles are involved in the altered processing of sensory stimulus commonly observed in migraine patients. Therefore, more attention should be paid to these regions for migraine research in the future.


2019 ◽  
Vol 31 (4) ◽  
pp. 560-573 ◽  
Author(s):  
Kenny Skagerlund ◽  
Taylor Bolt ◽  
Jason S. Nomi ◽  
Mikael Skagenholt ◽  
Daniel Västfjäll ◽  
...  

What are the underlying neurocognitive mechanisms that give rise to mathematical competence? This study investigated the relationship between tests of mathematical ability completed outside the scanner and resting-state functional connectivity (FC) of cytoarchitectonically defined subdivisions of the parietal cortex in adults. These parietal areas are also involved in executive functions (EFs). Therefore, it remains unclear whether there are unique networks for mathematical processing. We investigate the neural networks for mathematical cognition and three measures of EF using resting-state fMRI data collected from 51 healthy adults. Using 10 ROIs in seed to whole-brain voxel-wise analyses, the results showed that arithmetical ability was correlated with FC between the right anterior intraparietal sulcus (hIP1) and the left supramarginal gyrus and between the right posterior intraparietal sulcus (hIP3) and the left middle frontal gyrus and the right premotor cortex. The connection between the posterior portion of the left angular gyrus and the left inferior frontal gyrus was also correlated with mathematical ability. Covariates of EF eliminated connectivity patterns with nodes in inferior frontal gyrus, angular gyrus, and middle frontal gyrus, suggesting neural overlap. Controlling for EF, we found unique connections correlated with mathematical ability between the right hIP1 and the left supramarginal gyrus and between hIP3 bilaterally to premotor cortex bilaterally. This is partly in line with the “mapping hypothesis” of numerical cognition in which the right intraparietal sulcus subserves nonsymbolic number processing and connects to the left parietal cortex, responsible for calculation procedures. We show that FC within this circuitry is a significant predictor of math ability in adulthood.


2019 ◽  
Vol 33 (9) ◽  
pp. 1141-1148 ◽  
Author(s):  
Charlotte M Pretzsch ◽  
Bogdan Voinescu ◽  
Maria A Mendez ◽  
Robert Wichers ◽  
Laura Ajram ◽  
...  

Background: The potential benefits of cannabis and its major non-intoxicating component cannabidiol (CBD) are attracting attention, including as a potential treatment in neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the neural action of CBD, and its relevance to ASD, remains unclear. We and others have previously shown that response to drug challenge can be measured using functional magnetic resonance imaging (fMRI), but that pharmacological responsivity is atypical in ASD. Aims: We hypothesized that there would be a (different) fMRI response to CBD in ASD. Methods: To test this, task-free fMRI was acquired in 34 healthy men (half with ASD) following oral administration of 600 mg CBD or matched placebo (random order; double-blind administration). The ‘fractional amplitude of low-frequency fluctuations’ (fALFF) was measured across the whole brain, and, where CBD significantly altered fALFF, we tested if functional connectivity (FC) of those regions was also affected by CBD. Results: CBD significantly increased fALFF in the cerebellar vermis and the right fusiform gyrus. However, post-hoc within-group analyses revealed that this effect was primarily driven by the ASD group, with no significant change in controls. Within the ASD group only, CBD also significantly altered vermal FC with several of its subcortical (striatal) and cortical targets, but did not affect fusiform FC with other regions in either group. Conclusion: Our results suggest that, especially in ASD, CBD alters regional fALFF and FC in/between regions consistently implicated in ASD. Future studies should examine if this affects the complex behaviours these regions modulate.


Sign in / Sign up

Export Citation Format

Share Document