scholarly journals Macrophage-derived neutrophil chemotactic factor is involved in the neutrophil recruitment inhibitory activity present in the supernatants of LPS-stimulated macrophages

1996 ◽  
Vol 5 (2) ◽  
pp. 116-120 ◽  
Author(s):  
B. M. Tavares-Murta ◽  
F. Q. Cunha ◽  
M. Dias-Baruffi ◽  
M. C. Roque-Barreira ◽  
S. H. Ferreira

In a previous study, we demonstrated the presence of a neutrophil recruitment inhibitory factor (NRIF) in the supernatants of LPS-stimulated macrophages. Recently, the purification of a 54 kDa protein, identified as the macrophage-derived neutrophil chemotactic factor (MNCF) was reported. Since NRIF and MNCF are obtained under the same conditions, and, since the intravenous administration of TNF-α and IL-8 inhibits neutrophil migration, we have investigated whether MNCF could be responsible for this inhibitory activity. After affinity chromatography of the macrophage supernatants on a D-galactose column, the inhibitory activity was recovered in both the unbound (D-gal−) and bound (D-gal+) fractions, with MNCF being found in the D-gal+fraction. Further gel filtration of the latter on Superdex 75 yielded a single peak containing both activities. In a cytotoxicity assay, most of the TNF found in the crude supernatants was recovered in the D-gal−fraction. Furthermore, the incubation of the D-gal−fraction with anti-TNF-α plus anti-IL-8 antisera partially prevents its inhibitory effect on neutrophil migration, but had no effect on the D-gal+activity. Overall, these results suggest that the D-gal−inhibitory effect is partially mediated by TNF-α and IL-8, and that MNCF accounts for the inhibition of neutrophil migrationin vivoby the D-gal+fraction.

1992 ◽  
Vol 1 (1) ◽  
pp. 49-54 ◽  
Author(s):  
W. M. S. C. Tamashiro ◽  
B. M. Tavares-Murta ◽  
F. Q. Cunha ◽  
M. C. Roque-Barreira ◽  
R. M. D. Nogueira ◽  
...  

Inhibitory effect upon neutrophil migration to the inflammatory focus was previously detected in the cell-free incubation fluid of lipopolysaccharide (LPS)-stimulated macrophage monolayers. In the present study we showed that the neutrophil recruitment inhibitory activity from this supernatant was mainly detected in a fraction (P2) obtained by gel filtration chromatography on Sephacryl S-300. P2 fraction was able to inhibit ‘in vivo’ neutrophil emigration induced by different inflammatory stimuli, but it did not affect ‘in vitro’ neutrophil chemotaxis induced by FMLP. When injected intravenously, P2 inhibited oedema induced by carrageenin or immunological stimulus but not the oedema induced by dextran, thus affecting cell-dependent inflammatory responses. It was observed that P2 also induced neutrophil migration when injected locally in peritoneal cavities. This activity was significantly reduced by pretreatment of the animals with dexamethasone. Cytokines, such as IL-8 and TNF-α that are known to exhibit inhibitory effect upon neutrophil migration, were not detected in P2 fraction by highly sensitive assays. Overall the results suggest the existence of a novel cytokine exhibiting ‘in vivo’ neutrophil inhibitory activity, referred as NRIF.


1995 ◽  
Vol 4 (4) ◽  
pp. 257-262 ◽  
Author(s):  
M. Dias-Baruffi ◽  
M. C. Roque-Barreira ◽  
F. Q. Cunha ◽  
S. H. Ferreira

Macrophages stimulated with lipopolysaccharide (LPS) release a factor (MNCF; macrophage-derived neutrophil chemotactic factor) which induces neutrophil migrationin vivoandin vitro. Thein vivochemotactic activity of crude MNCF is not affected by pretreating the animals with dexamethasone, an uncommon characteristic which discriminates MNCF from known chemotactic cytokines. We purified MNCF by affinity chromatography of the supernatant from LPS-stimulated macrophages on immobilized D-galactose, followed by gel filtration of the sugar-binding material on Superdex 75. The activity was eluted in the volume corresponding to a MW of 54 kDa. SDS–PAGE of this preparation revealed a single band, also corresponding to a 54 kDa protein. MNCF is an acidic protein (pI < 4) as shown by chromatofocussing. Like the crude MNCF, the homogeneous protein induced neutrophil migrationin vitroas well asin vivo. This was not modified by dexamethasone pretreatment.


1995 ◽  
Vol 4 (4) ◽  
pp. 263-269 ◽  
Author(s):  
M. Dias-Baruffi ◽  
M. C. Roque-Barreira ◽  
F. Q. Cunha ◽  
S. H. Ferreira

We have recently described the purification of a 54 kDa acidic protein, identified as macrophage-derived neutrophil chemotactic factor (MNCF). This protein causesin vitrochemotaxis as well asin vivoneutrophil migration even in animals treated with dexamethasone. Thisin vivochemotactic activity of MNCF in animals pretreated with dexamethasone is an uncommon characteristic which discriminates MNCF from known chemotactic cytokines. MNCF is released in the supernatant by macrophage monolayers stimulated with lipopolysaccharide (LPS). In the present study, we describe some biological characteristics of homogenous purified MNCF. When assayedin vitro, MNCF gave a bell-shaped dose–response curve. Thisin vitroactivity was shown to be caused by haptotaxis. Unlike N-formyl-methionylleucyl- phenylalanine (FMLP) or interleukin 8 (IL-8), the chemotactic activity of MNCFin vivoandin vitro, was inhibited by preincubation with D-galactose but not with D-mannose. In contrast with IL-8, MNCF did not bind to heparin and antiserum against IL-8 was ineffective in inhibiting its chemotactic activity. These data indicate that MNCF induces neutrophil migration through a carbohydrate recognition property, but by a mechanism different from that of the known chemokines. It is suggested that MNCF may be an important mediator in the recruitment of neutrophils via the formation of a substrate bound chemotactic gradient (haptotaxis) in the inflamed tissues.


2005 ◽  
Vol 84 (1) ◽  
pp. 79-83 ◽  
Author(s):  
T.A. Silva ◽  
V.S. Lara ◽  
J.S. Silva ◽  
S.H.P. Oliveira ◽  
W.T. Butler ◽  
...  

Dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), the major dentin proteins, have been shown to induce neutrophil migration through release of IL-1β, TNF-α, MIP-2, and KC. However, the sources of these mediators were not determined. Here, the roles of macrophages and mast cells (MC) in dentin-induced neutrophil accumulation were investigated. Peritoneal MC depletion or the enhancement of macrophage population increased DSP- and DPP-induced neutrophil extravasation. Moreover, supernatants from DSP- and DPP-stimulated macrophages caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages was inhibited by dexamethasone or the supernatant of DSP-treated MC. Consistently, dexamethasone and the MC supernatant inhibited the production of IL-1β, TNF-α, and MIP-2 by macrophages. This inhibitory activity of the DSP-stimulated MC was neutralized by anti-IL-4 and anti-IL-10 antibodies. These results indicate that dentin induces the release of the neutrophil chemotactic substance(s) by macrophages, which are down-modulated by MC-derived IL-4 and IL-10.


1984 ◽  
Vol 52 (02) ◽  
pp. 134-137 ◽  
Author(s):  
Yaacov Matzner ◽  
Gerard Marx ◽  
Ruth Drexler ◽  
Amiram Eldor

SummaryClinical observations have shown that heparin has antiinflammatory activities. The effect of heparin on neutrophil chemotaxis was evaluated in vitro in the Boyden Chamber. This method enabled differentiation between the direct effects of heparin on neutrophil migration and locomotion, and its effects on chemotactic factors. Heparin inhibited both the random migration and directed locomotion of human neutrophils toward zymosan-activated serum (ZAS) and F-met-leu-phe (FMLP). Inhibition was found to be dependent on the concentrations of the heparin and of the chemotactic factors. No specific binding of heparin to the neutrophils could be demonstrated, and heparin’s inhibitory effects were eliminated by simple washing of the cells. When added directly to the chamber containing chemotactic factor, heparin inhibited the chemotactic activity of ZAS but not that of FMLP, suggesting a direct inhibitory effect against C5a, the principal chemotactic factor in ZAS.Experiments performed with low-molecular-weight heparin, N-desulfated heparin, dextran sulfate, chondroitin sulfate and dextran indicated that the inhibitory effects of heparin on neutrophil chemotaxis are not related to its anticoagulant activity, but probably depend on the degree of sulfation of the heparin molecule.


2010 ◽  
Vol 191 (4) ◽  
pp. 771-781 ◽  
Author(s):  
Alexander Ludwig ◽  
Grant P. Otto ◽  
Kirsi Riento ◽  
Emily Hams ◽  
Padraic G. Fallon ◽  
...  

We studied the function of plasma membrane microdomains defined by the proteins flotillin 1 and flotillin 2 in uropod formation and neutrophil chemotaxis. Flotillins become concentrated in the uropod of neutrophils after exposure to chemoattractants such as N-formyl-Met-Leu-Phe (fMLP). Here, we show that mice lacking flotillin 1 do not have flotillin microdomains, and that recruitment of neutrophils toward fMLP in vivo is reduced in these mice. Ex vivo, migration of neutrophils through a resistive matrix is reduced in the absence of flotillin microdomains, but the machinery required for sensing chemoattractant functions normally. Flotillin microdomains specifically associate with myosin IIa, and spectrins. Both uropod formation and myosin IIa activity are compromised in flotillin 1 knockout neutrophils. We conclude that the association between flotillin microdomains and cortical cytoskeleton has important functions during neutrophil migration, in uropod formation, and in the regulation of myosin IIa.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-22
Author(s):  
Chia-Jui Ku ◽  
Steven Grzegorski ◽  
Jordan A. Shavit

Hemostasis is a natural protective process that developed to retain a circulating blood system, conferred by a complicated yet sophisticated balance of factors. Disturbances of this network result in thrombosis or hemorrhage. Among many well-characterized coagulation factors, protein C (PC) exhibits multifunctional roles including anticoagulant, cytoprotective, and anti-inflammatory activities. The importance of PC has been demonstrated not only by the increased risk of venous thrombosis in individuals with heterozygous deficiency, but also the observed neonatal lethality in patients. Knockout mice exhibit similar neonatal lethality, which has made it difficult to further study complete deficiency. The zebrafish is a vertebrate organism that is characterized by a powerful genetic system, prolific breeding, rapid and transparent development, and a well described and highly conserved coagulation cascade. Here we utilize genome editing to generate a null allele of the PC gene (proc) in zebrafish and discover that its loss not only impairs hemostatic balance, but also affects neutrophil recruitment to sites of tissue injury. Through examination of publicly available zebrafish genome sequence, we determined that the proc locus is duplicated in tandem, resulting in two closely adjacent copies with nearly identical sequences. We used CRISPR/Cas9 with two single guide RNAs flanking the entire locus to produce a 17.3 kilobase deletion that knocks out both copies of proc to produce a complete null mutation, verified by sequencing and quantitative PCR. proc-/- mutants survived well into adulthood, with ~50% lethality by seven months of age. The embryonic survival and accessibility enabled us to perform intravital microscopy to evaluate the hemostatic effects of PC deficiency. We used laser-induced endothelial injury on the posterior cardinal vein (PCV) at 3 days post fertilization (dpf), which typically results in rapid formation of an occlusive fibrin-rich thrombus. proc-/- mutants had an average time to occlusion of 60 seconds versus 13 seconds in controls (p &lt; 0.0001), consistent with a consumptive coagulopathy, as previously seen in antithrombin III (at3) mutants. A transgenic background with fluorescently labeled fibrinogen showed that more than 95% of proc-/- mutants had spontaneous thrombi in the PCV, which was not present in controls. To assess the role of PC in inflammation, we used two different injury strategies, non-vascular tail transection and chemical treatment (copper sulfate), on 3 dpf zebrafish larvae. Staining for neutrophil granules revealed homing to the site of injury within 60-75 minutes. In proc-/- mutants we found an average 50% reduction in the number of neutrophils recruited to the site of injury yet counts in the caudal hematopoietic tissue (the site of larval hematopoiesis) were unchanged. Since protein S (PS) is a cofactor for PC anticoagulant function, we hypothesized that the consumptive coagulopathy, but not the neutrophil recruitment, would be PS-dependent. We used genome editing to disrupt the PS gene (pros1) and found that loss of PS also results in a mild consumptive coagulopathy, but spontaneous thrombus formation was less common in the PCV (25%) and was often in the heart instead (80%). Neutrophil recruitment was unaffected in pros1 mutants, and evaluation of double proc/pros1 mutants revealed no synergy in any of the phenotypes. In conclusion, PC and PS deficiency in zebrafish show some similarity to our previously reported model of AT3 deficiency, but the effects are less potent, allowing robust survival that enables in vivo analyses. Our data suggest that the thrombotic phenotypes of PC and PS deficiency are not identical, and display tissue-specific phenotypes. We also found evidence for PS-independent functions of PC in neutrophil migration. We speculate this is due to the role that PC plays in inflammation and signaling but cannot exclude a role in neutrophil extracellular trap (NET) formation. This model of complete proc-/- deficiency in an accessible organism will facilitate further in vivo study of PS-dependent and independent functions of PC, as well as interplay between the two factors. Disclosures Shavit: Bayer: Consultancy; Taked: Consultancy.


2013 ◽  
Vol 49 (4) ◽  
pp. 803-809
Author(s):  
Monica Lacerda Lopes Martins ◽  
Henrique Poltronieri Pacheco ◽  
Iara Giuberti Perini ◽  
Dominik Lenz ◽  
Tadeu Uggere de Andrade ◽  
...  

In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES), a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE) activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE) and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg), with acetylcholine (ACh) as positive control (5 µg/kg, i.v.). The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg) in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.). Captopril (30 mg/kg) was used as positive control. Bulbostylis capillaris (86.89 ± 15.20%) and ERE (74.89 ± 11.95%, ERE) were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%). ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.


Author(s):  
R. Castillo ◽  
S. Maragall ◽  
J. A. Guisasola ◽  
F. Casals ◽  
C. Ruiz ◽  
...  

Defective ADP-induced platelet aggregation has been observed in patients treated with streptokinase. This same effect appears “in vitro” when adding SK to platelet rich plasma (PRP). Classic hemophilia and normal platelet poor plasmas (PPP) treated with SK inhibit the aggregation of washed platelets; plasmin-treated normal human serum also shows an inhibitory effect on platelet aggregation. However, von Willebrand SK-treated plasmas do not inhibit the aggregation of washed platelets. The same results appear when plasmas are previously treated with a rabbit antibody to human factor VIII.This confirms that the antiaggregating effect is mainly linked to the digested factor VIII related antigen.The inhibition of ADP-induced platelet aggregation has been proved in gel filtration-isolated and washed platelets from SK-treated PRP.Defective ristocetin-induced platelet aggregation has also been observed- This action does not appear in washed platelets from SK-treated PRP in presence of normal PPP, but it does in presence of SK-treated PPP, which suggests that the inhibition of the ristocetin-induced aggregation is due to the lack of factor VIII and not to the factor VIII-related products.Heparin, either “in vivo” or “in vitro”, has corrected the antiaggregating effect of SK.


1977 ◽  
Author(s):  
R. von Hugo ◽  
R. Hafter ◽  
A. Stemberger ◽  
H. Graeff

Crosslinked high molecular weight derivatives of fibrin (fibrinoligomers) were observed during intravascular coagulation. It was the purpose of this study to investigate the complex formation of fibrin oligomers with fibrinogen and fibrinmonomer. Fibrinogen coupled to agarose (Fg-ag) as well as fi-brinmonomer coupled to agarose (Fm-ag) was used as substrate. Soluble oligomers of fibrin were produced by incubating fibrinogen with thrombin, calcium-chloride, cystein and F XIII. They were separated from fibrinogen by gel filtration. Γ-dimers were demonstrated in fractions from the void volume and the shoulder prior to the fibrinogen peak. These fractions were subjected to affinity chromatography. Crosslinked oligomers of fibrin were not adsorbed on Fg-ag, yet adsorption occured on Fm-ag. This indicates that fibrin oligomers have no affinity to fibrinogen, yet readily form complexes with fibrin. This could mean that in vivo they compete with fibrinogen for the fibrinmonomer part of soluble fibrin monomer complexes, and hence have a tendency to increase in size.


Sign in / Sign up

Export Citation Format

Share Document