scholarly journals Theoretical Rotordynamic Coefficients of Labyrinth Gas Seals: a Parametric Study on a Bulk Model

1999 ◽  
Vol 5 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Paola Forte ◽  
Fabio Latini

To date, available mathematical bulk models for the determination of linearized rotordynamic coefficients of labyrinth gas seals yield results which are not always in good agreement with the experimental ones. The object of this work is to discuss the limits of these models and to point out possible improvements and aspects that need further investigation.After a study of the steady flow characteristics with an FEM code, a parametric computer program, based on a known two-volume model, has been developed. A perturbation approach has been applied to the governing equations of the bulk model to calculate the stiffness and damping coefficients. Predicted coefficients are compared to the results of an earlier one-volume model.The model has also been tested with different expressions of the axial velocities in the two volumes and different laws for leakage and shear stress. The theoretical results are compared to the published experimental ones, pointing out the small effect of the various parameters in improving the correlation and the need of more complex models.

Author(s):  
Philip D. Brown ◽  
Dara W. Childs

Test results are presented for rotordynamic coefficients of a hole-pattern annular gas seals at supply pressures to 84 bar and running speeds to 20,200 RPM. The principal test variable of interest was negative preswirl. Preswirl signifies the circumferential fluid flow entering a seal, and negative preswirl indicates a fluid swirl in a direction opposite to rotor rotation. The influences of pressure ratio and rotor speed were also investigated. Measured results produce direct and cross-coupled stiffness and damping coefficients that are a function of excitation frequency Ω. Changes in pressure ratio had only small effects on most rotordynamic coefficients. Cross-coupled stiffness showed slightly different profiles through the mid-range of Ω values. Increasing rotor speed significantly increased cross-coupled stiffness and cross-coupled damping. At 10,200 RPM, high negative inlet preswirl produced negative cross-coupled stiffness over an excitation frequency range of 200–250 Hz. Negative preswirl did not affect direct stiffness and damping coefficients. Effective damping combines the stabilizing effect of direct damping and the destabilizing effect of cross-coupled stiffness. The cross-over frequency is the precession frequency where effective damping transitions from a negative value to a positive value with increasing frequency. At 20,200 RPM with a pressure ratio of 50%, peak effective damping was increased by 50%, and the cross-over frequency was reduced by 50% for high-negative preswirl versus zero preswirl. Hence, reverse swirl can greatly enhance the stabilizing capacity of hole-pattern balance-piston or division-wall seals for compressors. A two-control-volume model that uses the ideal gas law at constant temperature was used to predict rotordynamic coefficients. The model predicted direct rotordynamic coefficients well, but substantially under predicted cross-coupled rotordynamic coefficients especially at high negative preswirls.


1995 ◽  
Vol 62 (3) ◽  
pp. 679-684 ◽  
Author(s):  
Zhou Yang ◽  
L. San Andres ◽  
D. W. Childs

A finite difference scheme is implemented to solve the nonlinear differential equations describing the turbulent bulk-flow on the film lands of a hydrostatic journal bearing (HJB). A Newton-Raphson scheme is used to update the recess pressures and to satisfy the mass continuity requirement at each bearing recess. Comparisons of numerical predictions from the thermohydrodynamic (THD) model with experimental measurements of mass flow rate, fluid temperature, and static stiffness coefficient from a LH2 test HJB article show very good agreement. In particular, the exit temperature of the bearing is lower than the supply temperature; i.e., the liquid temperature decreases along the bearing length. Similar values of direct stiffness and damping coefficients are predicted by the adiabatic THD model and other considering isothermal flow characteristics. However, the THD model predicts lower cross-coupled stiffness and whirl frequency ratio (WFR < 0.5). The results show that for the application presented, the LH2 hydrostatic bearing is more stable than previously thought.


Author(s):  
Alexander O. Pugachev ◽  
Martin Deckner

This paper presents ongoing investigations on calculation and measurement of rotordynamic coefficients for brush-labyrinth gas seals. The seals are tested on static and dynamic test rigs to measure leakage, pressure distribution, and seal specific forces. To predict seal performance a full three-dimensional eccentric CFD model is considered. Rotordynamic coefficients are calculated using the whirling rotor method. The bristle pack of the brush seal is modeled using the porous medium approach. The prediction results show some deviations in absolute values of stiffness and damping coefficients in comparison with the experimental values, but the trends are similar. Comparing with a staggered labyrinth seal, the brush seal improves rotordynamic characteristics in most cases. Position of the brush seal in sealing configuration has a great influence on the stiffness and damping coefficients, while leakage performance remains relatively unaffected. The capability of the brush seal model based on the porous medium approach to predict rotordynamic coefficients is discussed.


Author(s):  
Alexander O. Pugachev ◽  
Ulrich Kleinhans ◽  
Manuel Gaszner

The analysis is presented for the computational fluid dynamics (CFD)-based modeling of short labyrinth gas seals. Seal leakage performance can be reliably predicted with CFD for a wide operating range and various sealing configurations. Prediction of seal influence on the rotordynamic stability, however, is a challenging task requiring relatively high computer processing power. A full 3D eccentric CFD model of a short staggered three-tooth-on-stator labyrinth seal is built in ANSYS CFX. An extensive grid independence study is carried out showing influence of the grid refinement on the stiffness coefficients. Three methods for the prediction of stiffness and damping coefficients as well as the effect of turbulence modeling, boundary conditions, and solver parameters are presented. The rest of the paper shows the results of a parameter variation (inlet pressure, preswirl, and shaft rotational speed) for two labyrinth seals with a tooth radial clearance of 0.5 mm and 0.27 mm, respectively. The latter was compared with experimental data in Pugachev and Deckner, 2010, “Analysis of the Experimental and CFD-Based Theoretical Methods for Studying Rotordynamic Characteristics of Labyrinth Gas Seals,” Proceedings of ASME Turbo Expo 2010, Paper No. GT2010-22058.


Author(s):  
Alexander O. Pugachev ◽  
Martin Deckner

This paper presents an analysis of the experimental and theoretical methods used to study rotordynamic characteristics of short staggered labyrinth gas seal. Two experimental identification procedures referred to as static and dynamic methods are presented. The static method allows determining direct and cross-coupled stiffness coefficients of the seal by integrating measured circumferential pressure distribution in cavities at various shaft eccentric positions. In the dynamic method, identification of stiffness and damping coefficients is based on the rotor excitation using a magnetic actuator and utilizes the effect of alternation of rotor vibrations due to aerodynamic forces acting in the seal. The experimental results obtained by the static and dynamic methods demonstrate an apparent discrepancy most of all in the direct stiffness coefficients. A CFD-based model of the seal is used to predict rotordynamic coefficients and to analyze the discrepancies between the static and dynamic measurements. The seal forces are calculated in two ways similar to the experimental procedures. The predictions are in good agreement with experimental results obtained by both measurement techniques. The effects of pressure differential, inlet swirl, shaft rotational speed, shaft eccentricity, and inflow cavity on seal stiffness and damping are presented. The discrepancies between different methods must be kept in mind while studying rotordynamic characteristics of seals.


Author(s):  
Mojtaba Azizi ◽  
Majid Shahravi ◽  
Jabbar Ali Zakeri

This study investigates the simultaneous effects of unsupported sleepers and rail random irregularities on track displacement and wheel load reduction, by means of numerical simulations with vehicle-track coupling. Vehicles are simulated as multibody systems comprising the major vehicle masses and suspension systems with nonlinear stiffness and damping. Flexible track with rail, sleeper and ballast components is considered using finite element and multibody programs. Numerical results of the simulations are in good agreement with field test measurements. Findings show that in tracks with less than four unsupported sleepers the vehicle is able to move at a speed of 110 km/h; with a higher number of unsupported sleepers the vehicle is vulnerable to derailment. The vehicle speed has no effect on the maximum rail displacement in tracks with less than four unsupported sleepers.


1988 ◽  
Vol 110 (3) ◽  
pp. 270-280 ◽  
Author(s):  
Joseph K. Scharrer

The basic equations are derived for a two-control-volume model for compressible flow in a labyrinth seal. The recirculation velocity in the cavity is incorporated into the model for the first time. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equations. The first-order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients.


1969 ◽  
Vol 62 (4) ◽  
pp. 663-670 ◽  
Author(s):  
Lars Carlborg

ABSTRACT Oestrogens administered in lower doses than necessary to induce full cornification of the mouse vagina induce mucification. It was shown previously that the degree of mucification could be estimated by quantitative determination of sialic acids. A suitable parameter for oestrogen assay was the measurement of vaginal sialic acid concentration which exhibited a clear cut dose response curve. Eleven assays of various oestrogens were performed with this method. Their estimated relative potencies were in good agreement with other routine oestrogen assays. A statistically sufficient degree of precision was found. The sensitivity was of the same order, or slightly higher, than the Allen-Doisy test.


2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


1967 ◽  
Vol 13 (6) ◽  
pp. 515-520 ◽  
Author(s):  
Genevieve Farese ◽  
Janice L Schmidt ◽  
Milton Mager

Abstract A completely automated analysis is described for the determination of serum calcium with glyoxal bis (2-hydroxyanil) solution (GBHA). The method is simple and precise, and the data obtained are in good agreement with results obtained by the manual GBHA procedure.


Sign in / Sign up

Export Citation Format

Share Document