Expression of Extracellular Matrix Components Versican, Chondroitin Sulfate, Tenascin, and Hyaluronan, and Their Association with Disease Outcome in Node-Negative Breast Cancer

2004 ◽  
Vol 10 (7) ◽  
pp. 2491-2498 ◽  
Author(s):  
Supaporn Suwiwat ◽  
Carmela Ricciardelli ◽  
Raija Tammi ◽  
Markku Tammi ◽  
Paivi Auvinen ◽  
...  
2020 ◽  
Vol 20 (3) ◽  
pp. 168-186 ◽  
Author(s):  
Tabinda Urooj ◽  
Bushra Wasim ◽  
Shamim Mushtaq ◽  
Syed Nudrat Nawaid Shah ◽  
Muzna Shah

: In Breast cancer, Lung is the second most common site of metastasis after the bone. Various factors are responsible for Lung metastasis occurring secondary to Breast cancer. Cancer cellderived secretory factors are commonly known as ‘Cancer Secretomes’. They exhibit a prompt role in the mechanism of Breast cancer lung metastasis. They are also major constituents of hostassociated tumor microenvironment. Through cross-talk between cancer cells and the extracellular matrix components, cancer cell-derived extracellular matrix components (CCECs) such as hyaluronan, collagens, laminin and fibronectin cause ECM remodeling at the primary site (breast) of cancer. However, at the secondary site (lung), tenascin C, periostin and lysyl oxidase, along with pro-metastatic molecules Coco and GALNT14, contribute to the formation of pre-metastatic niche (PMN) by promoting ECM remodeling and lung metastatic cells colonization. Cancer cell-derived secretory factors by inducing cancer cell proliferation at the primary site, their invasion through the tissues and vessels and early colonization of metastatic cells in the PMN, potentiate the mechanism of Lung metastasis in Breast cancer. : On the basis of biochemical structure, these secretory factors are broadly classified into proteins and non-proteins. This is the first review that has highlighted the role of cancer cell-derived secretory factors in Breast cancer Lung metastasis (BCLM). It also enumerates various researches that have been conducted to date in breast cancer cell lines and animal models that depict the prompt role of various types of cancer cell-derived secretory factors involved in the process of Breast cancer lung metastasis. In the future, by therapeutically targeting these cancer driven molecules, this specific type of organ-tropic metastasis in breast cancer can be successfully treated.


1987 ◽  
Vol 105 (6) ◽  
pp. 2511-2521 ◽  
Author(s):  
R Perris ◽  
S Johansson

The ability of purified extracellular matrix components to promote the initial migration of amphibian neural crest (NC) cells was quantitatively investigated in vitro. NC cells migrated avidly on fibronectin (FN), displaying progressively more extensive dispersion at increasing amounts of material incorporated in the substrate. In contrast, dispersion on laminin substrates was optimal at low protein concentrations but strongly reduced at high concentrations. NC cells were unable to migrate on substrates containing a high molecular mass chondroitin sulfate proteoglycan (ChSP). When proteolytic peptides, representing isolated functional domains of the FN molecule, were tested as potential migration substrates, the cell binding region of the molecule (105 kD) was found to be as active as the intact FN. A 31-kD heparin-binding fragment also stimulated NC cell migration, whereas NC cells dispersed to a markedly lower extent on the isolated collagen-binding domain (40 kD), or the latter domain linked to the NH2-terminal part of the FN molecule. Migration on the intact FN was partially inhibited by antibodies directed against the 105- and 31-kD fragments, respectively; dispersion was further decreased when the antibodies were used in combination. Addition of the ChSP to the culture medium dramatically perturbed NC cell migration on substrates of FN, as well as of 105- or 31-kD fragments. However, preincubation of isolated cells or substrates with ChSP followed by washing did not affect NC cell movement. The use of substrates consisting of different relative amounts of ChSP and the 105-kD peptide revealed that ChSP counteracted the motility-promoting activity of the 105-kD FN fragment in a concentration-dependent manner also when bound to the substrate. Our results indicate that NC cell migration on FN involves two separate domains of the molecule, and that ChSP can modulate the migratory behavior of NC cells moving along FN-rich pathways and may therefore influence directionally and subsequent localization of NC cells in the embryo.


Sign in / Sign up

Export Citation Format

Share Document