scholarly journals Stratification of Intermediate-Risk Endometrial Cancer Patients into Groups at High Risk or Low Risk for Recurrence Based on Tumor Gene Expression Profiles

2005 ◽  
Vol 11 (6) ◽  
pp. 2252-2257 ◽  
Author(s):  
Sarah E. Ferguson ◽  
Adam B. Olshen ◽  
Agnès Viale ◽  
Richard R. Barakat ◽  
Jeff Boyd
2019 ◽  
Vol 20 (9) ◽  
pp. 2131 ◽  
Author(s):  
Michelle A. Glasgow ◽  
Peter Argenta ◽  
Juan E. Abrahante ◽  
Mihir Shetty ◽  
Shobhana Talukdar ◽  
...  

The majority of patients with high-grade serous ovarian cancer (HGSOC) initially respond to chemotherapy; however, most will develop chemotherapy resistance. Gene signatures may change with the development of chemotherapy resistance in this population, which is important as it may lead to tailored therapies. The objective of this study was to compare tumor gene expression profiles in patients before and after treatment with neoadjuvant chemotherapy (NACT). Tumor samples were collected from six patients diagnosed with HGSOC before and after administration of NACT. RNA extraction and whole transcriptome sequencing was performed. Differential gene expression, hierarchical clustering, gene set enrichment analysis, and pathway analysis were examined in all of the samples. Tumor samples clustered based on exposure to chemotherapy as opposed to patient source. Pre-NACT samples were enriched for multiple pathways involving cell cycle growth. Post-NACT samples were enriched for drug transport and peroxisome pathways. Molecular subtypes based on the pre-NACT sample (differentiated, mesenchymal, proliferative and immunoreactive) changed in four patients after administration of NACT. Multiple changes in tumor gene expression profiles after exposure to NACT were identified from this pilot study and warrant further attention as they may indicate early changes in the development of chemotherapy resistance.


2019 ◽  
Vol 80 (04) ◽  
pp. 240-249
Author(s):  
Jiajia Wang ◽  
Jie Ma

Glioblastoma multiforme (GBM), an aggressive brain tumor, is characterized histologically by the presence of a necrotic center surrounded by so-called pseudopalisading cells. Pseudopalisading necrosis has long been used as a prognostic feature. However, the underlying molecular mechanism regulating the progression of GBMs remains unclear. We hypothesized that the gene expression profiles of individual cancers, specifically necrosis-related genes, would provide objective information that would allow for the creation of a prognostic index. Gene expression profiles of necrotic and nonnecrotic areas were obtained from the Ivy Glioblastoma Atlas Project (IVY GAP) database to explore the differentially expressed genes.A robust signature of seven genes was identified as a predictor for glioblastoma and low-grade glioma (GBM/LGG) in patients from The Cancer Genome Atlas (TCGA) cohort. This set of genes was able to stratify GBM/LGG and GBM patients into high-risk and low-risk groups in the training set as well as the validation set. The TCGA, Repository for Molecular Brain Neoplasia Data (Rembrandt), and GSE16011 databases were then used to validate the expression level of these seven genes in GBMs and LGGs. Finally, the differentially expressed genes (DEGs) in the high-risk and low-risk groups were subjected to gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and gene set enrichment analyses, and they revealed that these DEGs were associated with immune and inflammatory responses. In conclusion, our study identified a novel seven-gene signature that may guide the prognostic prediction and development of therapeutic applications.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2305-2305
Author(s):  
Thomas L. Ortel ◽  
Michele Beckman ◽  
W Craig Hooper ◽  
Deborah A Lewis ◽  
Jen-Tsan A. Chi ◽  
...  

Abstract Abstract 2305 Background. Recurrent venous thromboembolism (VTE) occurs in ∼30% of patients with spontaneous VTE after completion of a standard course of anticoagulant therapy. D-dimer levels and selected clinical parameters have been used to identify patients at low risk for recurrent VTE, who may safely discontinue antithrombotic therapy. We have used gene expression profiles to distinguish patients with a single VTE from patients with recurrent VTE. The purpose of this study was to extend this initial report and identify unique gene expression patterns from whole blood that correlate with different risk profiles for VTE recurrence. Methods. Patients with ≥1 prior VTE, with the first event occurring at age 18 years or older and >3 months from the most recent event were recruited for this study. Patients were allocated into 4 groups: (1) ‘low-risk’ patients had sustained ≥1 provoked VTE; (2) ‘moderate-risk’ patients had sustained 1 unprovoked VTE (with or without provoked VTE); (3) ‘high-risk’ patients had sustained ≥2 unprovoked VTE and had no evidence for antiphospholipid antibodies; and (4) antiphospholipid syndrome (APS) patients met established consensus criteria for APS. A similar number of individuals with no prior history of VTE were enrolled as a control population. Citrated plasma, serum and PAXgene RNA tubes were collected, processed and stored at −80°C until shipped to the CDC for analysis. Antiphospholipid testing was performed on all participants to confirm correct group distribution. Total RNA was isolated from whole blood drawn into PAXgene tubes. Following sample labeling and normalization, cRNA samples were hybridized to Illumina HT-12 Beadchips to assay whole genome gene expression with over 47,000 probes against human transcripts. Two hundred and twenty six unique samples passed initial quality control measures. Quality assessment of raw data was done using GenomeStudio. The raw data files were converted to a text file using the IlluminaExpression FileCreator in GenePattern and then log transformed, normalized and median-centered using Cluster. Both unsupervised (hierarchical clustering using Cluster) and supervised analyses (SAM) were used to identify genes that were differentially expressed between the groups. GATHER was used to help understand the biological processes and gene ontology of the gene lists generated by Cluster and SAM. Results. A total of 226 participants were enrolled into the study. Characteristics of the patient groups are summarized in the Table. Demographically, the groups were similar except that patients in the high-risk group tended to be older and were more likely male. The number of events per patient, and the proportion on anticoagulant therapy, increased with the risk group. Antiphospholipid antibodies were detected in several patients in each of the 3 non-APS VTE patient groups, but in most cases this was a single test positive; antiphospholipid antibodies were present in the majority of patients with APS, typically with more than one test positive (37 of 45 with complete testing, 82%). Preliminary analysis of the gene expression profiles using an unsupervised clustering by gene on the high-risk and low-risk groups identified multiple genes that distinguished the two groups, including 18 immune response genes identified by GATHER. These two patient groups were also distinguished by SAM analysis, and multiple genes in the MAPK signaling pathway that separated the two groups were identified by the KEGG pathways in GATHER. Additional analyses are being performed on all of the groups. Conclusions. Whole blood gene expression profiling can be used to develop profiles that distinguish patients with VTE who differ based on their risk of recurrent events. Individual genes identified in these profiles may provide biological insights into the molecular basis for recurrent VTE. Disclosures: Heit: Daiichi Sankyo: Honoraria; Ortho-McNeil Janssen: Honoraria; Covidien: Honoraria. Manco-Johnson:Octapharma AG: Consultancy; Bayer: Research Funding.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jean Hausser ◽  
Pablo Szekely ◽  
Noam Bar ◽  
Anat Zimmer ◽  
Hila Sheftel ◽  
...  

AbstractRecent advances have enabled powerful methods to sort tumors into prognosis and treatment groups. We are still missing, however, a general theoretical framework to understand the vast diversity of tumor gene expression and mutations. Here we present a framework based on multi-task evolution theory, using the fact that tumors need to perform multiple tasks that contribute to their fitness. We find that trade-offs between tasks constrain tumor gene-expression to a continuum bounded by a polyhedron whose vertices are gene-expression profiles, each specializing in one task. We find five universal cancer tasks across tissue-types: cell-division, biomass and energy, lipogenesis, immune-interaction and invasion and tissue-remodeling. Tumors that specialize in a task are sensitive to drugs that interfere with this task. Driver, but not passenger, mutations tune gene-expression towards specialization in specific tasks. This approach can integrate additional types of molecular data into a framework of tumor diversity grounded in evolutionary theory.


2012 ◽  
Vol 14 (5) ◽  
pp. 708-714 ◽  
Author(s):  
Jie Li ◽  
Zhi-Hong Zhang ◽  
Chang-Jun Yin ◽  
Christian Pavlovich ◽  
Jun Luo ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 538
Author(s):  
Havjin Jacob ◽  
Julie A. Dybvik ◽  
Sigmund Ytre-Hauge ◽  
Kristine E. Fasmer ◽  
Erling A. Hoivik ◽  
...  

Integrative tumor characterization linking radiomic profiles to corresponding gene expression profiles has the potential to identify specific genetic alterations based on non-invasive radiomic profiling in cancer. The aim of this study was to develop and validate a radiomic prognostic index (RPI) based on preoperative magnetic resonance imaging (MRI) and assess possible associations between the RPI and gene expression profiles in endometrial cancer patients. Tumor texture features were extracted from preoperative 2D MRI in 177 endometrial cancer patients. The RPI was developed using least absolute shrinkage and selection operator (LASSO) Cox regression in a study cohort (n = 95) and validated in an MRI validation cohort (n = 82). Transcriptional alterations associated with the RPI were investigated in the study cohort. Potential prognostic markers were further explored for validation in an mRNA validation cohort (n = 161). The RPI included four tumor texture features, and a high RPI was significantly associated with poor disease-specific survival in both the study cohort (p < 0.001) and the MRI validation cohort (p = 0.030). The association between RPI and gene expression profiles revealed 46 significantly differentially expressed genes in patients with a high RPI versus a low RPI (p < 0.001). The most differentially expressed genes, COMP and DMBT1, were significantly associated with disease-specific survival in both the study cohort and the mRNA validation cohort. In conclusion, a high RPI score predicts poor outcome and is associated with specific gene expression profiles in endometrial cancer patients. The promising link between radiomic tumor profiles and molecular alterations may aid in developing refined prognostication and targeted treatment strategies in endometrial cancer.


2008 ◽  
Vol 26 (29) ◽  
pp. 4798-4805 ◽  
Author(s):  
Olivier Decaux ◽  
Laurence Lodé ◽  
Florence Magrangeas ◽  
Catherine Charbonnel ◽  
Wilfried Gouraud ◽  
...  

Purpose Survival of patients with multiple myeloma is highly heterogeneous, from periods of a few weeks to more than 10 years. We used gene expression profiles of myeloma cells obtained at diagnosis to identify broadly applicable prognostic markers. Patients and Methods In a training set of 182 patients, we used supervised methods to identify individual genes associated with length of survival. A survival model was built from these genes. The validity of our model was assessed in our test set of 68 patients and in three independent cohorts comprising 853 patients with multiple myeloma. Results The 15 strongest genes associated with the length of survival were used to calculate a risk score and to stratify patients into low-risk and high-risk groups. The survival-predictor score was significantly associated with survival in both the training and test sets and in the external validation cohorts. The Kaplan-Meier estimates of rates of survival at 3 years were 90.5% (95% CI, 85.6% to 95.3%) and 47.4% (95% CI, 33.5% to 60.1%), respectively, in our patients having a low risk or high risk independently of traditional prognostic factors. High-risk patients constituted a homogeneous biologic entity characterized by the overexpression of genes involved in cell cycle progression and its surveillance, whereas low-risk patients were heterogeneous and displayed hyperdiploid signatures. Conclusion Gene expression–based survival prediction and molecular features associated with high-risk patients may be useful for developing prognostic markers and may provide basis to treat these patients with new targeted antimitotics.


Sign in / Sign up

Export Citation Format

Share Document