scholarly journals PP2A-activating Drugs Enhance FLT3 Inhibitor Efficacy through AKT Inhibition–Dependent GSK-3β–Mediated c-Myc and Pim-1 Proteasomal Degradation

2021 ◽  
Vol 20 (4) ◽  
pp. 676-690
Author(s):  
Mario Scarpa ◽  
Prerna Singh ◽  
Christopher M. Bailey ◽  
Jonelle K. Lee ◽  
Shivani Kapoor ◽  
...  
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1163-1163
Author(s):  
Jonelle K. Lee ◽  
Mario Scarpa ◽  
Aditi Chatterjee ◽  
Moaath Mustafa Ali ◽  
Prerna Singh ◽  
...  

Abstract BACKGROUND Internal tandem duplication in the fms-like tyrosine kinase 3 receptor tyrosine kinase (FLT3-ITD) is present in acute myeloid leukemia (AML) in 30% of patients, associated with poor treatment outcomes due to rapid relapse. FLT3 inhibitors are used in the clinic, but with incomplete efficacy and development of resistance. Further treatment options are needed. The serine/threonine kinase proviral integration site for Moloney murine leukemia virus (Pim-1) is upregulated downstream of FLT3-ITD; it directly stimulates cell growth and inhibits apoptosis, and also phosphorylates and stabilizes FLT3 in a positive feedback loop in cells with FLT3-ITD. Dual targeting of Pim-1 and FLT3 is a promising treatment strategy. The c-Myc transcription factor contributes to dysregulation of cell growth and apoptosis in cancers, including AML. In addition to transcriptional regulation, c-Myc is regulated post-translationally by T58 phosphorylation by the serine/threonine kinase glycogen synthase kinase-3- β (GSK-3β). Here we show that concurrent treatment of cells with FLT3-ITD with Pim and FLT3 inhibitors activates GSK-3β, which phosphorylates and post-translationally downregulates c-Myc. METHODS Ba/F3-ITD and MV4-11 cells, with FLT3-ITD, and FLT3-ITD AML patient blasts were cultured with the pan-Pim inhibitor AZD1208 (1 μM) and/or the FLT3 inhibitors gilteritinib or quizartinib (15 nM, 1 nM), with and without the GSK-3β inhibitor TCG-24 (20 μM). c-Myc, p-GSK3-α/β (S21/9) and GSK3-α/β protein expression was measured by immunoblotting. c-Myc mRNA was measured by qPCR. Cells were also cultured with cycloheximide (100 μg/mL) with and without the proteasome inhibitor MG-132 (20 μM) to measure protein half-life and proteasomal degradation. To study the role of c-Myc overexpression and activation, Ba/F3-ITD cells were infected with retroviral estrogen receptor (ER)-Myc plasmid, causing c-Myc nuclear translocation when activated by 4-hydroxytamoxifen (4-OHT; 300 nM). To study the role of c-Myc phosphorylation at T58, Ba/F3-ITD cells were infected with MycT58A plasmid, preventing c-Myc phosphorylation at T58. Apoptosis was detected by Annexin V and propidium iodide staining, measured by flow cytometry. RESULTS Treatment with Pim inhibitor AZD1208 and FLT3 inhibitor gilteritinib or quizartinib combination rapidly downregulated c-Myc protein expression in Ba/F3-ITD and MV4-11 cells, with FLT3-ITD, and in primary FLT3-ITD AML patient blasts, compared to quizartinib or gilteritinib alone. Pim inhibitor and FLT3 inhibitor combination treatment did not decrease c-Myc mRNA levels, but markedly decreased c-Myc protein half-life, from 36 mins without drugs and 24 mins with gilteritinib to 18 mins with combination. Half-life did not decrease when cells were pre-treated with the proteasome inhibitor MG-132, consistent with post-translational downregulation through proteasomal degradation. Apoptosis induction by Pim inhibitor and FLT3 inhibitor combination decreased by more than 50% in Ba/F3-ITD cells infected with ER-Myc plasmid and treated with 4-OHT, demonstrating the major role of c-Myc downregulation in apoptosis induction by combination treatment. GSK-3b is inactivated by phosphorylation, and combination treatment rapidly decreased p-GSK-3b levels, while total GSK-3b levels were unchanged, indicating activation of GSK-3b. Treatment of cells with FLT3-ITD with the GSK-3b inhibitor TCG-24 in addition to Pim and FLT3 inhibitors abrogated c-Myc protein downregulation, demonstrating that Pim and FLT3 inhibitor combination downregulates c-Myc through activation of GSK-3b. Finally, Pim and FLT3 inhibitor combination treatment did not downregulate c-Myc in Ba/F3-ITD cells transfected with c-Myc T58A, preventing c-Myc phosphorylation at T58, showing that c-Myc phosphorylation at T58 is necessary for its downregulation by combination treatment. CONCLUSIONS Concurrent treatment of cells with FLT3-ITD with Pim kinase inhibitor enhances the efficacy of FLT3 inhibitors through activation of GSK-3β and GSK-3β-mediated phosphorylation of c-Myc at T58, with resulting c-Myc downregulation through increased proteasomal degradation. This work and previous work in our laboratory on PP2A activating drugs and FLT3 inhibitor combination (Mol Cancer Ther 20:676, 2021) support GSK-3β activation as a mechanism for enhancing efficacy of FLT3 inhibitors in AML with FLT3-ITD. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yeon Jung Kim ◽  
Min Jueng Kang ◽  
Eunah Kim ◽  
Tae Hyun Kweon ◽  
Yun Soo Park ◽  
...  

AbstractO-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification which occurs on the hydroxyl group of serine or threonine residues of nucleocytoplasmic proteins. It has been reported that the presence of this single sugar motif regulates various biological events by altering the fate of target proteins, such as their function, localization, and degradation. This study identified SMAD4 as a novel O-GlcNAc-modified protein. SMAD4 is a component of the SMAD transcriptional complex, a major regulator of the signaling pathway for the transforming growth factor-β (TGF-β). TGF-β is a powerful promoter of cancer EMT and metastasis. This study showed that the amount of SMAD4 proteins changes according to cellular O-GlcNAc levels in human lung cancer cells. This observation was made based on the prolonged half-life of SMAD4 proteins. The mechanism behind this interaction was that O-GlcNAc impeded interactions between SMAD4 and GSK-3β which promote proteasomal degradation of SMAD4. In addition, O-GlcNAc modification on SMAD4 Thr63 was responsible for stabilization. As a result, defects in O-GlcNAcylation on SMAD4 Thr63 attenuated the reporter activity of luciferase, the TGF-β-responsive SMAD binding element (SBE). This study’s findings imply that cellular O-GlcNAc may regulate the TGF-β/SMAD signaling pathway by stabilizing SMAD4.


2016 ◽  
Vol 36 (1) ◽  
Author(s):  
Qingming Dong ◽  
Francesco Giorgianni ◽  
Sarka Beranova-Giorgianni ◽  
Xiong Deng ◽  
Robert N. O'Meally ◽  
...  

We have identified Serine 73 as a novel GSK-3β site on SREBP-1c that alters its affinity for SCAP, and proteasomal degradation. Phosphorylation of Serine 73 by GSK-3β during starvation (insulin-depleted stat) may lead to lower levels of SREBP-1c; conversely, de-phosphorylation of this site may be involved in stabilizing SREBP-1c by insulin (by blocking GSK-3β action). A functional role of this site needs to be corroborated in vivo.


Author(s):  
Liu Yang ◽  
Rongbo Dai ◽  
Hao Wu ◽  
Zeyu Cai ◽  
Nan Xie ◽  
...  

Background: Vascular calcification is a prevalent complication in chronic kidney disease and contributes to increased cardiovascular morbidity and mortality. XBP1 (X-box binding protein 1), existing as the unspliced (XBP1u) and spliced (XBP1s) forms, is a key component of the endoplasmic reticulum stress involved in vascular diseases. However, whether XBP1u participates in the development of vascular calcification remains unclear. Methods: We aim to investigate the role of XBP1u in vascular calcification.XBP1u protein levels were reduced in high phosphate (Pi)-induced calcified vascular smooth muscle cells (VSMCs), calcified aortas from mice with adenine diet-induced chronic renal failure (CRF) and calcified radial arteries from CRF patients. Results: Inhibition of XBP1u rather than XBP1s upregulated in the expression of the osteogenic markers runt-related transcription factor 2 (Runx2) and msh homeobox2 (Msx2), and exacerbated high Pi-induced VSMC calcification, as verified by calcium deposition and Alizarin red S staining. In contrast, XBP1u overexpression in high Pi-induced VSMCs significantly inhibited osteogenic differentiation and calcification. Consistently, SMC-specific XBP1 deficiency in mice markedly aggravated the adenine diet- and 5/6 nephrectomy-induced vascular calcification compared with that in the control littermates. Further interactome analysis revealed that XBP1u bound directly to β-catenin, a key regulator of vascular calcification, via aa 205-230 in its C-terminal degradation domain. XBP1u interacted with β-catenin to promote its ubiquitin-proteasomal degradation and thus inhibited β-catenin/T-cell factor (TCF)-mediated Runx2 and Msx2 transcription. Knockdown of β-catenin abolished the effect of XBP1u deficiency on VSMC calcification, suggesting a β-catenin-mediated mechanism. Moreover, the degradation of β-catenin promoted by XBP1u was independent of glycogen synthase kinase 3β (GSK-3β)-involved destruction complex. Conclusions: Our study identified XBP1u as a novel endogenous inhibitor of vascular calcification by counteracting β-catenin and promoting its ubiquitin-proteasomal degradation, which represents a new regulatory pathway of β-catenin and a promising target for vascular calcification treatment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 35-35 ◽  
Author(s):  
Patrick R. Baldwin ◽  
Shivani Kapoor ◽  
Karthika Natarajan ◽  
Rossana Trotta ◽  
Adriana Tron ◽  
...  

Abstract Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) are present in acute myeloid leukemia (AML) cells in 30% of cases and are associated with high relapse rate and short disease-free survival following both chemotherapy and allogeneic hematopoietic stem cell transplantation. Inhibitors of FLT3 signaling have shown activity in clinical trials in FLT3-ITD AML, but efficacy has generally been limited and transient. Concurrent inhibition of other targets in FLT3-ITD signaling pathways is being explored as an approach to increasing the depth and duration of responses to FLT3 inhibitors. The oncogenic serine/threonine kinase Pim-1 is transcriptionally upregulated downstream of FLT3-ITD and phosphorylates and stabilizes FLT3, thereby promoting FLT3 signaling in a positive feedback loop in cells with FLT3-ITD. Pim kinase inhibitors are in clinical trials. We previously showed that combinations of clinically active Pim kinase and FLT3 inhibitors at pharmacologically relevant concentrations enhance apoptosis and decrease clonogenic growth of FLT3-ITD AML cell lines and primary patient cells in vitro and suppress growth of FLT3-ITD AML cells in vivo, in relation to treatment with FLT3 or Pim inhibitors alone. Here we studied the mechanistic effects of concurrent Pim kinase and FLT3 inhibition, demonstrating a novel mechanism of Mcl-1 downregulation in FLT3-ITD AML cells. Ba/F3-ITD cells, transfected with FLT3-ITD, were cultured with the pan-Pim kinase inhibitor AZD1208 at 1 μM, a concentration chosen based on in vitro and phase I clinical trial data, and/or the FLT3 inhibitor quizartinib at 1 nM, its IC50 concentration, and expression of the anti-apoptotic proteins Mcl-1, Bcl2 and Bcl-xL and the pro-apoptotic proteins BAD/S112 p-BAD, BAK, BAX and Bim was measured by western blot analysis. Mcl-1 expression decreased in a time-dependent manner with AZD1208 and quizartinib co-treatment, but not with treatment with either inhibitor alone, while levels of the other proteins did not change. Mcl-1 downregulation with Pim kinase and FLT3 inhibitor combination treatment was then confirmed in the human FLT3-ITD AML cell lines MV4-11 and MOLM-14. Mcl-1 expression is regulated at multiple levels, and we next sought to determine the mechanism(s) by which it is downregulated by concurrent Pim and FLT3 inhibition. While Mcl-1 protein levels decreased, Mcl-1 mRNA levels did not change, indicating post-transcriptional regulation. Additionally, levels of miR-29b, a negative regulator of Mcl-1 translation,decreased similarly in Ba/F3-ITD cells treated with AZD1208 and quizartinib, compared to quizartinib alone. Polysome profiling showed decreased total mRNA translation, but no selective reduction in Mcl-1 translation. In contrast, the progressive decrease in Mcl-1 protein expression with AZD1208 and quizartinib co-treatment was abrogated by addition of the proteasome inhibitor MG-132, demonstrating that Mcl-1 protein is downregulated by enhanced Mcl-1 proteasomal degradation. This mechanism was further confirmed by demonstration of an increase in ubiquitinated Mcl-1 prior to Mcl-1 downregulation in cells co-treated with AZD1208 and quizartinib, but not with each inhibitor alone or with DMSO control. The deubiquitinase USP9X decreases Mcl-1 ubiquitination and consequent proteasomal degradation, and we found that USP9X expression is downregulated prior to the increase in ubiquitinated Mcl-1 and the subsequent decrease in Mcl-1 protein levels during AZD1208 and quizartinib co-treatment, but was not altered by treatment with either inhibitor alone. In contrast, expression of the ubiquitin E3 ligases Mule/ARF-BP1, SCFβ-TrCP and Trim17, which mediate Mcl ubiquitination, did not change prior to Mcl-1 downregulation. Preclinical studies in our laboratory and others have shown in vitro and in vivo efficacy of combination treatment with Pim kinase and FLT3 inhibitors in FLT3-ITD AML, suggesting clinical promise of this approach. Here we show that, mechanistically, concurrent Pim kinase and FLT3 inhibition causes a post-translational decrease in expression of the anti-apoptotic protein Mcl-1 via enhanced proteasomal degradation, preceded by downregulation of the Mcl-1 deubiquitinase USP9X and an increase in ubiquitinated Mcl-1, a novel mechanism of Mcl-1 downregulation in FLT3-ITD AML cells. Disclosures Tron: AstraZeneca: Employment; AstraZeneca: Employment. Huszar:AstraZeneca: Employment.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Nicholas Mastrandrea ◽  
Wesley Cai ◽  
Kim Tham ◽  
Terrence Monks ◽  
Serrine Lau

2007 ◽  
Vol 27 (8) ◽  
pp. 3187-3198 ◽  
Author(s):  
Ji Young Lee ◽  
Su Jin Yu ◽  
Yun Gyu Park ◽  
Joon Kim ◽  
Jeongwon Sohn

ABSTRACT UV irradiation has been reported to induce p21WAF1/CIP1 protein degradation through a ubiquitin-proteasome pathway, but the underlying biochemical mechanism remains to be elucidated. Here, we show that ser-114 phosphorylation of p21 protein by glycogen synthase kinase 3β (GSK-3β) is required for its degradation in response to UV irradiation and that GSK-3β activation is a downstream event in the ATR signaling pathway triggered by UV. UV transiently increased GSK-3β activity, and this increase could be blocked by caffeine or by ATR small interfering RNA, indicating ATR-dependent activation of GSK-3β. ser-114, located within the putative GSK-3β target sequence, was phosphorylated by GSK-3β upon UV exposure. The nonphosphorylatable S114A mutant of p21 was protected from UV-induced destabilization. Degradation of p21 protein by UV irradiation was independent of p53 status and prevented by proteasome inhibitors. In contrast to the previous report, the proteasomal degradation of p21 appeared to be ubiquitination independent. These data show that GSK-3β is activated by UV irradiation through the ATR signaling pathway and phosphorylates p21 at ser-114 for its degradation by the proteasome. To our knowledge, this is the first demonstration of GSK-3β as the missing link between UV-induced ATR activation and p21 degradation.


2010 ◽  
Vol 30 (7) ◽  
pp. 1757-1768 ◽  
Author(s):  
Nobuhiro Kurabayashi ◽  
Tsuyoshi Hirota ◽  
Mihoko Sakai ◽  
Kamon Sanada ◽  
Yoshitaka Fukada

ABSTRACT Circadian molecular oscillation is generated by a transcription/translation-based feedback loop in which CRY proteins play critical roles as potent inhibitors for E-box-dependent clock gene expression. Although CRY2 undergoes rhythmic phosphorylation in its C-terminal tail, structurally distinct from the CRY1 tail, little is understood about how protein kinase(s) controls the CRY2-specific phosphorylation and contributes to the molecular clockwork. Here we found that Ser557 in the C-terminal tail of CRY2 is phosphorylated by DYRK1A as a priming kinase for subsequent GSK-3β (glycogen synthase kinase 3β)-mediated phosphorylation of Ser553, which leads to proteasomal degradation of CRY2. In the mouse liver, DYRK1A kinase activity toward Ser557 of CRY2 showed circadian variation, with its peak in the accumulating phase of CRY2 protein. Knockdown of Dyrk1a caused abnormal accumulation of cytosolic CRY2, advancing the timing of a nuclear increase of CRY2, and shortened the period length of the cellular circadian rhythm. Expression of an S557A/S553A mutant of CRY2 phenocopied the effect of Dyrk1a knockdown in terms of the circadian period length of the cellular clock. DYRK1A is a novel clock component cooperating with GSK-3β and governs the Ser557 phosphorylation-triggered degradation of CRY2.


2006 ◽  
Vol 17 (6) ◽  
pp. 2572-2580 ◽  
Author(s):  
Liora Bachar-Dahan ◽  
Janna Goltzmann ◽  
Abraham Yaniv ◽  
Arnona Gazit

The Wnt signaling pathway plays a major role in development, and upon deregulation it is implicated in neoplasia. The hallmark of the canonical Wnt signal is the protection of β-catenin from ubiquitination and proteasomal degradation induced by glycogen synthase kinase (GSK)-3β inhibition. The stabilized β-catenin translocates to the nucleus where it binds to T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors, activating the expression of Wnt target genes. In the absence of Wnt signal, TCF/LEF bind to Groucho (Gro)/TLE corepressors and repress Wnt target genes. Gro/TLE bind also to Engrailed (En) transcription factors mediating En-repressive activity on En target genes. Here, we present data suggesting that En-1 serves also as a negative regulator of β-catenin transcriptional activity; however, its repressive effect is independent of Gro/TLE. Our data suggest that En-1 acts by destabilizing β-catenin via a proteasomal degradation pathway that is GSK-3β–independent. Moreover, because En-1-mediated β-catenin degradation is also Siah independent, our data imply that En-1 exerts its repressive effect by a novel mechanism negatively controlling the level of β-catenin.


Sign in / Sign up

Export Citation Format

Share Document