Abstract 2143: High-Resolution Molecular Karyotyping of Chronic Myeloid Leukemia Patients in Blast Crisis by 6.0 SNP-Arrays Identifies Focal Copy Number Alterations Affecting the Whole Sequence or Specific Exons of Oncogenes and Tumor Suppressor Genes

Author(s):  
Alessandra Gnani ◽  
Simona Soverini ◽  
Sabrina Colarossi ◽  
Fausto Castagnetti ◽  
Annalisa Astolfi ◽  
...  
1994 ◽  
Vol 68 (1) ◽  
pp. 3-7 ◽  
Author(s):  
G. Gaidano ◽  
A. Serra ◽  
A. Guerrasio ◽  
G. Rege-Cambrin ◽  
U. Mazza ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2715-2715
Author(s):  
Naomi E van der Sligte ◽  
Manuela Krumbholz ◽  
Agata Pastorczak ◽  
Blanca Scheijen ◽  
Josephine T. Tauer ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a rare malignancy in children and is mostly diagnosed in the chronic phase (CP). In adults, the five-year overall survival rate is 89% for patients on Imatinib and disease progression occurs in 1-3% per year (Druker 2006). Once a blast crisis (BC) has occurred, treatment options are limited with a median survival of only a few months (Cortes 2008). Therefore, early recognition of patients at risk for developing a BC is desirable. Besides the translocation t(9;22)(q34;q11), IKZF1, PAX5, and CDKN2A deletions have been reported in CML lymphoid blast crisis (LyBC) of both adult and pediatric patients (Mullighan 2008, Alpár 2012). The aim of this study was to investigate the presence of IKZF1 deletions and other copy number alterations (CNAs) by MLPA analysis in a large cohort of pediatric CML patients at time of diagnosis in order to determine whether CNAs commonly found in pediatric ALL might predict disease progression and / or treatment response. Between October 1991 and October 2012 a total of 86 children with newly diagnosed CML were included. The median follow up was 31 months. Among the 86 patients, 82 patients were diagnosed in CP, 2 patients in accelerated phase (AP), and 2 patients in LyBC. Six patients experienced progression to a BC respectively a myeloid blast crisis (MyBC) (N=2) and LyBC (N=4). At time of diagnosis, an IKZF1 deletion was detected in one patient diagnosed with CML-AP (Table A, patient no 58). IKZF1 and EBF1 deletions were detected in one patient diagnosed with CML-LyBC (Table A, patient no 22). No CNAs were detected in the 82 patients diagnosed with CML-CP. At time of disease progression, new CNAs were detected at time of the LyBC (Table A, patient no 62, 64, and 67). Due to the absence of material no CNAs could be detected in both patients experiencing a MyBC. In conclusion, we were able to detect CNAs in progressive CML disease (CML-AP and CML-LyBC) and not in the samples at the time of chronic phase in this large pediatric cohort of CML patients. Therefore, the investigated CNAs could not be used to predict disease progression at time of diagnosis. The CNAs detected in patients with progressive CML were similar to specific CNAs detected in pediatric B-cell precursor ALL, indicating a similar disease development (Kuiper 2010). Additionally, our results are in accordance with existing literature, suggesting that mechanisms of disease progression in pediatric and adult CML might be similar (Brazma, 2007). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2176-2176
Author(s):  
Simona Soverini ◽  
Sabrina Colarossi ◽  
Alessandra Gnani ◽  
Fausto Castagnetti ◽  
Annalisa Astolfi ◽  
...  

Abstract Abstract 2176 Poster Board II-153 Progression from chronic phase to blast crisis (BC) remains a major hurdle on the road to effective treatment of chronic myeloid leukemia (CML). BC is known to be associated with accumulation of additional genetic alterations, but these alterations have so far been only partially characterized. The development of SNP-arrays as a tool for high-resolution karyotyping now allows to perform high-throughput genome-wide screens for submicroscopic genomic alterations with unprecedented informativity and resolution and to precisely map all the genes involved in these alterations. We have used Human 6.0 SNP Arrays (Affymetrix) to perform high-resolution molecular allelokaryotyping of 25 DNA samples from BC (myeloid, n=16; lymphoid, n=9) CML patients (pts). The 6.0 SNP Array technology relies on 1.8 million markers evenly spaced across the genome, with a median inter-marker distance <700 bp. Loss of Heterozygosity (LOH) analysis identified several recurrent regions of uniparental disomy (UPD) ranging from 970Kb to 2.4Mb: 3p21.31-3p21.2 (19 pts); 4p15.1 (n=18 pts); 14q23.3 (n=18 pts); 8q22.2 (n=15 pts); 7q31.31 (n=14 pts); 3q11.2 (13 pts); 17q23.2 (n=13 pts); 12q24.11-12q24.13 (n=12 pts); 15q15.2-15q15.3 (n=12 pts); 16q22.1 (n=12 pts); 10q22.1-10q22.2 (n=11 pts); 1p34.3 (n=10pts); 7q11.22 (n=10 pts); 8p11.12 (n=10 pts); 15q23-15q24.1 (n=9 pts); 20q11.22-20q11.23 (n=7 pts); 16q11.2 (n=6 pts); 17q11.2 (n=5 pts). Three pts had evidence of UPD involving the whole long arm of chromosomes 5, 14 and 19, respectively. Macroscopic copy number alterations (CNAs) (+8, +19, +14q; +21q; -7; -18, -16q; -17p; -6p; -6q; -9q) were frequent and easily detected. A variety of submicroscopic CNAs were also detected. However, we decided to exploit the unprecedented resolution power of Human 6.0 SNP Arrays and the ability of Genotyping Console 3.0.2 (Affymetrix) software to precisely pinpoint the borders of these CNAs. We thus aimed our analysis to the identification of very small CNAs that may have been missed by previous studies - all using less sensitive assays. This approach revealed a high number of focal gains or losses ranging from 4 to 47Kb, affecting single genes or even some exons only. Genes involved in >2 pts are listed in the Table below. Gains/losses mapping to known regions of copy number variation (CNV) were excluded. All the genes found to harbor CNAs were transcription factors, adaptor proteins, receptor and non-receptor kinases involved in cell proliferation and apoptosis - with a known role as oncogenes or tumor suppressors or oncogene/tumor suppressor interactors. Although these results confirm a high degrees of heterogeneity in the alterations detectable in BC CML pts, members of the RAS pathway (indicated with an asterisk) were the most frequently altered genes. Further characterization by polymerase chain reaction and sequencing is ongoing. In conclusion, the power of 6.0 SNP Array technology allowed us to detect previously unidentified alterations targeting whole or part of key oncogenes or tumor suppressors whose deregulation may play a role in determining the aggressive phenotype of BC CML, and which may represent potential therapeutic targets. Supported by European LeukemiaNet, AIL, AIRC, PRIN, Fondazione del Monte di Bologna e Ravenna. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 45 (4) ◽  
pp. 689-694 ◽  
Author(s):  
Giorgina Specchia ◽  
Francesco Albano ◽  
Luisa Anelli ◽  
Clelia Tiziana Storlazzi ◽  
Antonella Zagaria ◽  
...  

2009 ◽  
Vol 48 (10) ◽  
pp. 931-942 ◽  
Author(s):  
Kylie L. Gorringe ◽  
Manasa Ramakrishna ◽  
Louise H. Williams ◽  
Anita Sridhar ◽  
Samantha E. Boyle ◽  
...  

Blood ◽  
2020 ◽  
Vol 135 (26) ◽  
pp. 2337-2353 ◽  
Author(s):  
Tun Kiat Ko ◽  
Asif Javed ◽  
Kian Leong Lee ◽  
Thushangi N. Pathiraja ◽  
Xingliang Liu ◽  
...  

Abstract Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using whole-genome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRC-driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine+PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP.


Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2013-2016 ◽  
Author(s):  
H Sill ◽  
JM Goldman ◽  
NC Cross

The p16 gene, also referred to as MTS1, INK4, CDK4I, or CDKN2, at chromosome 9p21 has recently been described as a tumor suppressor that may be involved in a wide range of tumors. We have used a semiquantitative multiplex polymerase chain reaction assay to search for deletions of the p16 gene in 34 patients with chronic myeloid leukemia in blast crisis (CML BC), 19 patients with acute lymphoblastic leukemia (ALL), and 25 patients with acute myeloid leukemia (AML). Homozygous deletions of p16 exons were found in 5 of 10 (50%) patients with CML in lymphoid BC and in 5 (26%) ALL patients, but in only 1 (2%) case with AML. No deletions were found in CML BC of nonlymphoid phenotype. Comparison of chronic phase DNA or remission DNA with acute leukemia DNA in 5 individuals showed that the p16 deletions were acquired and not inherited, directly implicating these lesions in the pathogenesis of the disease. We conclude that functional elimination of the p16 gene, or a closely mapping gene, is involved in a significant number of patients with CML in lymphoid transformation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3535-3535
Author(s):  
Hiroshi Handa ◽  
Itsumi Suda ◽  
Ayaka Kaneko ◽  
Yuta Masuda ◽  
Kei Kimura ◽  
...  

Abstract Background: 5-methylation (5-mC) is the predominant epigenetic mark in mammalian genomic DNA. When promoter region of certain gene is hypermethylated, the gene becomes transcription silent. Promoter of tumor suppressor genes (TSG) usually exists in CpG islands, and silencing of TSGs in cancer cells is often associated with hypermethylation. p15, CDH1 are frequently methylated in myeloid malignancies such as acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Common Fragile Site (CFS) is a fragile site on the chromosomes easy to produce gap and break, and it contains putative TSGs. FHIT, WWOX and PARK2 are the CFS genes known to be frequently methylated in solid tumors, but their status of hematologic malignancies has not been fully elucidated yet. 5-hydroxymethylaiton (5-hmC) is a newly discovered epigenetic modification that is presumably generated by oxidation of 5-mC by the TET family of cytosine oxygenases. Techniques identifying 5-mC cannot distinguish between 5-mC and 5-hmC, therefore 5-hmC status of the genes have not fully elucidated yet too. Recently it has been demonstrated that mutation of epigenetic modifiers (DNMT3A, TET2, IDH1/2) play important role on AML pathogenesis. We tried to clarify 5-mC and 5-hmC status of TSG p15, CDH1 and CFS genes FHIT, WWOX and PARK2 by using new techniques and the relationships with expression levels of epigenetic modifiers in AML. Methods: BM samples obtained from 74 of AML patients are subjected to the study after informed consent. This study was approved by IRB of Gunma University Hospital. DNA, RNA were extracted from BM mononuclear cells. Methylation specific PCR (MSP) was carried out to assay 5-mC of p15, CDH1, WWOX, PARK2. Quantification of 5-mC and 5-hmC (except PARK2) was carried out by methylation sensitive restriction enzyme assay (MSRE) with glucosylation and Q-PCR. Total DNA 5-mC and 5-hmC were analyzed by ELISA. The mRNA expression levels of p15, CDH1, FHIT, WWOX, PARK2, DNMT1, 3A, TET2 were quantified by Q-PCR. Results: MSP revealed that p15, CDH1, WWOX and PARK2 were methylated in 43.1%, 94.3%, 35.7% and 36.9% of AML, respectively. PARK2 methylation was not found in t(15;17) APL, but in 32% of normal karyotype AML (NK-AML), in 67% of t(8;21) CBF-AML. In contrast, the p15 methylation was found in 83.3% of APL, 45.5% of NK-AML, 50% of CBF-AML. WWOX methylation was found in 42.9% of APL, in 16% of NK-AML and 66.7% of CBF-AML. Adverse karyotype AML (adv-AML) tended to show lower % of WWOX, PARK2 and p15 methylation with 15.8%, 21.1% and 18.8% compare to good risk karyotype. The frequency of the methylation of PARK2 and WWOX were varied among karyotypes and the methylation was mutually exclusive. ELISA demonstrated that mean % of total 5-mC DNA was 1.08% and ratio of 5-hmC in 5-mC was 0.95% in AML. Interestingly, 5-hmC was 0% in adv-AML although 5-mC existed (mean: 1.05%). Locus specific MSRE-QPCR demonstrated that mean % of 5-mC of p15, CDH1, WWOX and FHIT were 6.62%, 1.25%, 8.33%, 2.88%, respectively., In adv-AML, 5-hmC of CDH1, WWOX and FHIT were not detected, although 5-mC of these genes were detected (0.41%, 9.0%, 2.14%) in accordance with whole DNA analysis. In good and intermediate AML, 5-hmC of these genes was 3.44%, 1.07%, 2.69% ,respectively. RQ-PCR demonstrated that CDH1, p15, WWOX, PARK2 and epigenetic modifier DNMT1, DNMT3A and TET2 expression were not different among various karyotype risks, but only FHIT expression significantly higher in good risk group (p=0.047). The expression levels of the genes were not significantly different between mentylated and unmethylated. The ratio of 5-hmC/5-mC of the TSGs tended to be associated with the expression levels of the corresponding genes, but the association did not reach statistical significance. DNMT3A expression in AML with 5-mC PARK2 was higher than in other AML (p=0.016). Contrary to the intuition, DNMT3A expression was positively correlated with FHIT, PARK2 expression (r=0.776, p&lt;0.001, r=0.689, p&lt;0.001). CDH1 expression was positively correlated with DNMT1 and negatively correlated with TET2 expression (r=0.447, p=0.009, r=-0.349, p=0.022). OS and EFS were not different among the methylation status of these genes. Conclusion: CFS genes are selectively methylated in AML. MSRE-QPCR can distinguish 5-mC and 5-hmC and quantify the ratio of them with locus specific manner. The relationship between gene expression and 5-hmC, 5-mC should be pursued. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 44 (3) ◽  
pp. 279-291 ◽  
Author(s):  
David A. Sweetser ◽  
Andrew J. Peniket ◽  
Christina Haaland ◽  
Adam A. Blomberg ◽  
Yuntian Zhang ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 760 ◽  
Author(s):  
Huei-Tzu Chien ◽  
Sou-De Cheng ◽  
Chun-Ta Liao ◽  
Hung-Ming Wang ◽  
Shiang-Fu Huang

Oral squamous cell carcinoma (OSCC) is a common cancer in Taiwan and worldwide. To provide some clues for clinical management of OSCC, 72 advanced-stage OSCCs were analyzed using two microarray platforms (26 cases with Affymetrix 500 K and 46 cases with Affymetrix SNP 6.0). Genomic identification of significant targets in cancer analyses were used to identify significant copy number alterations (CNAs) using a q-value cutoff of 0.25. Among the several significant regions, 12 CNAs were common between these two platforms. Two gain regions contained the well-known oncogenes EGFR (7p11.2) and CCND1 (11q13.3) and several known cancer suppressor genes, such as FHIT (3p14.2–p12.1), FAT1 (4q35.1), CDKN2A (9p21.3), and ATM (11q22.3–q24.3), reside within the 10 deletion regions. Copy number gains of EGFR and CCND1 were further confirmed by fluorescence in situ hybridization and TaqMan CN assay, respectively, in 257 OSCC cases. Our results indicate that EGFR and CCND1 CNAs are significantly associated with clinical stage, tumor differentiation, and lymph node metastasis. Furthermore, EGFR and CCND1 CNAs have an additive effect on OSCC tumor progression. Thus, current genome-wide CNA analysis provides clues for future characterization of important oncogenes and tumor suppressor genes associated with the behaviors of the disease.


Sign in / Sign up

Export Citation Format

Share Document