Abstract 178: Vitamin D reduces lung cancer progression the N-nitroso-tris-chloroethylurea model of mouse lung squamous cell carcinoma.

Author(s):  
Sarah A. Mazzilli ◽  
Mary Reid ◽  
Paul Bogner ◽  
Donald Trump ◽  
Candace Johnson
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Liyan Hou ◽  
Yingbo Li ◽  
Ying Wang ◽  
Dongqiang Xu ◽  
Hailing Cui ◽  
...  

In this study, we investigated the potential prognostic value of ubiquitin-conjugating enzyme E2D1 (UBE2D1) RNA expression in different histological subtypes of non-small-cell lung cancer (NSCLC). A retrospective study was performed by using molecular, clinicopathological, and survival data in the Cancer Genome Atlas (TCGA)—Lung Cancer. Results showed that both lung adenocarcinoma (LUAD) (N=514) and lung squamous cell carcinoma (LUSC) (N=502) tissues had significantly elevated UBE2D1 RNA expression compared to the normal tissues (p<0.001 and p=0.036, respectively). UBE2D1 RNA expression was significantly higher in LUAD than in LUSC tissues. Increased UBE2D1 RNA expression was independently associated with shorter OS (HR: 1.359, 95% CI: 1.031–1.791, p=0.029) and RFS (HR: 1.842, 95% CI: 1.353–2.508, p<0.001) in LUAD patients, but not in LUSC patients. DNA amplification was common in LUAD patients (88/551, 16.0%) and was associated with significantly upregulated UBE2D1 RNA expression. Based on these findings, we infer that UBE2D1 RNA expression might only serve as an independent prognostic indicator of unfavorable OS and RFS in LUAD, but not in LUSC.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2071 ◽  
Author(s):  
Patricia P. Reis ◽  
Sandra A. Drigo ◽  
Robson F. Carvalho ◽  
Rainer Marco Lopez Lapa ◽  
Tainara F. Felix ◽  
...  

Background: Micro(mi)RNAs, potent gene expression regulators associated with tumorigenesis, are stable, abundant circulating molecules, and detectable in plasma. Thus, miRNAs could potentially be useful in early lung cancer detection. We aimed to identify circulating miRNA signatures in plasma from patients with lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), and to verify whether miRNAs regulate lung oncogenesis pathways. Methods: RNA isolated from 139 plasma samples (40 LUAD, 38 LUSC; 61 healthy/non-diseased individuals) were divided into discovery (38 patients; 21 controls for expression quantification using an 800-miRNA panel; Nanostring nCounter®) and validation (40 patients; 40 controls; TaqMan® RT-qPCR) cohorts. Elastic net, Maximizing-R-Square Analysis (MARSA), and C-Statistics were applied for miRNA signature identification. Results: When compared to healthy individuals, 580 of 606 deregulated miRNAs in LUAD and 221 of 226 deregulated miRNAs in LUSC had significantly increased levels. Among the 10 most significantly overexpressed miRNAs, 6 were common to patients with LUAD and LUSC. Further analysis identified three signatures composed of 12 miRNAs. Signatures included miRNAs commonly overexpressed in patient plasma. Enriched pathways included target genes modulated by three miRNAs in the C-Statistics signature: miR-16-5p, miR-92a-3p, and miR-451a. Conclusions: The 3-miRNA signature (miR-16-5p, miR-92a-3p, miR-451a) had high specificity (100%) and sensitivity (84%) to predict cancer (LUAD and LUSC). These miRNAs are predicted to modulate genes and pathways with known roles in lung tumorigenesis, including EGFR, K-RAS, and PI3K/AKT signaling, suggesting that the 3-miRNA signature is biologically relevant in adenocarcinoma and squamous cell carcinoma of the lung.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 477 ◽  
Author(s):  
Yu Zhou ◽  
Qi Zhang ◽  
Meijun Du ◽  
Donghai Xiong ◽  
Yian Wang ◽  
...  

Background: Chemopreventive agent (CPA) treatment is one of the main preventive options for lung cancer. However, few studies have been done on pharmacodynamic biomarkers of known CPAs for lung cancer. Materials and methods: In this study, we treated mouse models of lung squamous cell carcinoma with three different CPAs (MEK inhibitor: AZD6244, PI-3K inhibitor: XL-147 and glucocorticoid: Budesonide) and examined circulating exosomal miRNAs in the plasma of each mouse before and after treatment. Results: Compared to baselines, we found differentially expressed exosomal miRNAs after AZD6244 treatment (n = 8, FDR < 0.05; n = 55, raw p-values < 0.05), after XL-147 treatment (n = 4, FDR < 0.05; n = 26, raw p-values < 0.05) and after Budesonide treatment (n = 1, FDR < 0.05; n = 36, raw p-values < 0.05). In co-expression analysis, we found that modules of exosomal miRNAs reacted to CPA treatments differently. By variable selection, we identified 11, 9 and nine exosomal miRNAs as predictors for AZD6244, XL-147 and Budesonide treatment, respectively. Integrating all the results, we highlighted 4 miRNAs (mmu-miR-215-5p, mmu-miR-204-5p, mmu-miR-708-3p and mmu-miR-1298-5p) as the key for AZD6244 treatment, mmu-miR-23a-3p as key for XL-147 treatment, and mmu-miR-125a-5p and mmu-miR-16-5p as key for Budesonide treatment. Conclusions: This is the first study to use circulating exosomal miRNAs as pharmacodynamic biomarkers for CPA treatment in lung cancer.


2015 ◽  
Vol 8 (10) ◽  
pp. 895-904 ◽  
Author(s):  
Sarah A. Mazzilli ◽  
Pamela A. Hershberger ◽  
Mary E. Reid ◽  
Paul N. Bogner ◽  
Kristopher Atwood ◽  
...  

2021 ◽  
Vol 55 (S2) ◽  
pp. 13-28

Background/Aims: The mineral-dust-induced gene mdig is a lung-cancer-associated oncogene. The focus of this study is to evaluate the expression status of mdig in lung cancer and to assess its influence in predicting the patient’s overall survival. Methods: Using high-density tissue microarrays and clinical samples of synchronous multiple primary lung cancer (SMPLC), we investigated the expression of mdig through immunohistochemistry and utilized the open-access lung cancer patient databases containing genomic and transcriptomic data from the UCSC Xena and TCGA web platforms to determine the prognostic values of mdig expression status among different subtypes of lung cancer. Results: mdig is upregulated in smokers and in lung squamous cell carcinoma. High mdig expression predicted poor overall survival in lung squamous cell carcinoma and female smokers. Among tumor tissues from SMPLC patients, we not only unraveled the highest positive rate of mdig expression, but also revealed a unique cytoplasmic, rather than nuclear localization of mdig protein. Furthermore, by inspecting some pathological but not cancerous lung tissues, we believe that mdig is required for the transformation of non-cancerous lung cells to the fully-fledged cancer cells. Conclusion: These data suggested that mdig is involved in various stages of lung carcinogenesis, possibly through the epigenetic regulation on some critical cancer-associated genes, and increased mdig expression is an important prognostic factor for some types of lung cancer.


Author(s):  
Shuzhen Tan ◽  
Zesong Li ◽  
Kai Li ◽  
Yingqi Li ◽  
Guosheng Liang ◽  
...  

N6-methyladenosine (m6A) methylation is of significant importance in the initiation and progression of tumors, but how specific genes take effect in different lung cancers still needs to be explored. The aim of this study is to analyze the correlation between the m6A RNA methylation regulators and the occurrence and development of lung cancer. The data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were obtained through the TCGA database. We systematically analyzed the related pathological characteristics and prognostic factors by applying univariate and multivariate Cox regression, as well as LASSO Cox regression. Some of 23 m6A regulators are identified as having high expression in lung cancer. In addition, risk score has been shown to be an independent prognostic factor in lung cancer. Our research not only fully reveals that m6A regulators and clinical pathological characteristics are potentially useful with respect to survival and prognosis in different lung tumors but also can lay a theoretical root for the treatment for lung cancer—notably, to point out a new direction for the development of treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kui Liu ◽  
Jing Ma ◽  
Jiao Ao ◽  
Lili Mu ◽  
Yixian Wang ◽  
...  

Chromatin-modifying enzymes, especially protein arginine methyltransferases (PRMTs), have been identified as candidate targets for cancer. Cellular or animal-based evidence has suggested an association between coactivator-linked arginine methyltransferase 1 (CARM1) and cancer progression. However, the relationship between CARM1 and patient prognosis and immune infiltration in pancancer patients is unknown. On the basis of the GEO and TCGA databases, we first investigated the possible oncogenic functions of CARM1 in thirty-three tumor types. CARM1 expression was elevated in many types of tumors. In addition, there was a significant association between CARM1 expression and the survival rate of tumor patients. Uterine corpus endometrial carcinoma (UCES) samples had the highest CARM1 mutation frequency of all cancer types. In head and neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma (LUSC), CARM1 expression was associated with the level of CD8+ T cell infiltration, and cancer-associated fibroblast infiltration was also observed in other tumors including kidney renal papillary cell carcinoma (KIRC) and prostate adenocarcinoma (PRAD). CARM1 was involved in immune modulation and played an important role in the tumor microenvironment (TME). Furthermore, activities associated with RNA transport and its metabolism were included in the possible mechanisms of CARM1. Herein, our first pancancer research explores the oncogenic role of CARM1 in various tumors. CARM1 is associated with immune infiltrates and can be employed as a predictive biomarker in pancancer.


Sign in / Sign up

Export Citation Format

Share Document