Abstract 4402: Glycosyltransferase ST6Gal-I enables cancer cells to survive upon growth factor deprivation

Author(s):  
Colleen Britain ◽  
Susan Bellis
Open Biology ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 150108 ◽  
Author(s):  
Aleix Gavaldà-Navarro ◽  
Teresa Mampel ◽  
Octavi Viñas

Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows.


2001 ◽  
Vol 120 (5) ◽  
pp. A493-A493
Author(s):  
J HARDWICK ◽  
G VANDENBRINK ◽  
S VANDEVENTER ◽  
M PEPPELENBOSCH

Author(s):  
Kyung Hee Lee ◽  
Eun Young Choi ◽  
Min Kyoung Kim ◽  
Myung Soo Hyun ◽  
Jong Ryul Eun ◽  
...  

2020 ◽  
Vol 17 (5) ◽  
pp. 585-615 ◽  
Author(s):  
Nikhil S. Sakle ◽  
Shweta A. More ◽  
Sachin A. Dhawale ◽  
Santosh N. Mokale

Background: Cancer is a complex disease involving genetic and epigenetic alteration that allows cells to escape normal homeostasis. Kinases play a crucial role in signaling pathways that regulate cell functions. Deregulation of kinases leads to a variety of pathological changes, activating cancer cell proliferation and metastases. The molecular mechanism of cancer is complex and the dysregulation of tyrosine kinases like Anaplastic Lymphoma Kinase (ALK), Bcr-Abl (Fusion gene found in patient with Chronic Myelogenous Leukemia (CML), JAK (Janus Activated Kinase), Src Family Kinases (SFKs), ALK (Anaplastic lymphoma Kinase), c-MET (Mesenchymal- Epithelial Transition), EGFR (Epidermal Growth Factor receptor), PDGFR (Platelet-Derived Growth Factor Receptor), RET (Rearranged during Transfection) and VEGFR (Vascular Endothelial Growth Factor Receptor) plays major role in the process of carcinogenesis. Recently, kinase inhibitors have overcome many problems of traditional cancer chemotherapy as they effectively separate out normal, non-cancer cells as well as rapidly multiplying cancer cells. Methods: Electronic databases were searched to explore the small molecule tyrosine kinases by polyphenols with the help of docking study (Glide-7.6 program interfaced with Maestro-v11.3 of Schrödinger 2017) to show the binding energies of polyphenols inhibitor with different tyrosine kinases in order to differentiate between the targets. Results: From the literature survey, it was observed that the number of polyphenols derived from natural sources alters the expression and signaling cascade of tyrosine kinase in various tumor models. Therefore, the development of polyphenols as a tyrosine kinase inhibitor against targeted proteins is regarded as an upcoming trend for chemoprevention. Conclusion: In this review, we have discussed the role of polyphenols as chemoreceptive which will help in future for the development and discovery of novel semisynthetic anticancer agents coupled with polyphenols.


2009 ◽  
Vol 2 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Motoki Terada ◽  
Chikara Ohnishi ◽  
Nobuhiro Ueno ◽  
Akio Shimizu ◽  
Michiyuki Kanai ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1742
Author(s):  
Melysa Fitriana ◽  
Wei-Lun Hwang ◽  
Pak-Yue Chan ◽  
Tai-Yuan Hsueh ◽  
Tsai-Tsen Liao

Head and neck squamous cell carcinomas (HNSCCs) are epithelial malignancies with 5-year overall survival rates of approximately 40–50%. Emerging evidence indicates that a small population of cells in HNSCC patients, named cancer stem cells (CSCs), play vital roles in the processes of tumor initiation, progression, metastasis, immune evasion, chemo-/radioresistance, and recurrence. The acquisition of stem-like properties of cancer cells further provides cellular plasticity for stress adaptation and contributes to therapeutic resistance, resulting in a worse clinical outcome. Thus, targeting cancer stemness is fundamental for cancer treatment. MicroRNAs (miRNAs) are known to regulate stem cell features in the development and tissue regeneration through a miRNA–target interactive network. In HNSCCs, miRNAs act as tumor suppressors and/or oncogenes to modulate cancer stemness and therapeutic efficacy by regulating the CSC-specific tumor microenvironment (TME) and signaling pathways, such as epithelial-to-mesenchymal transition (EMT), Wnt/β-catenin signaling, and epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor (IGF1R) signaling pathways. Owing to a deeper understanding of disease-relevant miRNAs and advances in in vivo delivery systems, the administration of miRNA-based therapeutics is feasible and safe in humans, with encouraging efficacy results in early-phase clinical trials. In this review, we summarize the present findings to better understand the mechanical actions of miRNAs in maintaining CSCs and acquiring the stem-like features of cancer cells during HNSCC pathogenesis.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sinem Tunçer ◽  
Rafig Gurbanov

AbstractObjectivesThe expression level of Vascular Endothelial Growth Factor (VEGF) is assumed as a prognostic marker for several tumor types, including colorectal cancer. Therefore, the determination of pre- and post-therapy levels of VEGF appears to have great value in the assessment of tumor prognosis. Enzyme-Linked Immunosorbent Assay (ELISA) is commonly used for the determination of serum or plasma VEGF levels, but the method is costly and time-consuming. In this study, we aimed to describe a rapid and cost-effective analysis method to discriminate VEGF overexpressing colorectal cancer-derived conditioned medium (CM).MethodsAttenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy, combined with Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), was used to differentiate VEGF overexpressing colorectal cancer cell line CM from CM obtained from the corresponding control cells which express and secrete relatively lower amount of VEGF.ResultsSamples belong to VEGF overexpressing colorectal cancer cells were clearly distinguished from the control group with very high PC scores as PC1 + PC2 = 96%. Besides, a 100% accurate distinction between these two groups was achieved by the LDA analysis.ConclusionsATR-FTIR spectroscopy combined with pattern recognition techniques was able to discriminate CM of VEGF overexpressing colorectal cancer cells with high efficiency and accuracy.


Sign in / Sign up

Export Citation Format

Share Document