Abstract LB-278: In vivo evaluation model of human T cell activation by immune checkpoint inhibitors using human PBMC-transferred NOG mouse

Author(s):  
Chiyoko Nishime ◽  
Ikumi Katano ◽  
Eiko Nishinaka ◽  
Kenji Kawai ◽  
Ryoji Ito ◽  
...  
2021 ◽  
Vol 16 ◽  
Author(s):  
Wissam Zam ◽  
Lina Ali

Background: Immunotherapy drugs, known as immune checkpoint inhibitors (ICIs), work by blocking checkpoint proteins from binding with their partner proteins. The two main pathways that are specifically targeted in clinical practice are cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) that showed potent immune-modulatory effects through their function as negative regulators of T cell activation. Methods: In view of the rapid and extensive development of this research field, we conducted a comprehensive review of the literature and update on the use of CTLA-4, PD-1 and PD-L1 targeted therapy in the treatment of several types of cancer including melanoma, non-small-cell lung carcinoma, breast cancer, hepatocellular carcinoma, hodgkin lymphoma, cervical cancer, head and neck squamous cell carcinoma. Results: Based on the last updated list released on March 2019, seven ICIs are approved by the FDA including ipilimumab, pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, and cemiplimab. Conclusion: This review also highlighted the most common adverse effects caused by ICIs and which affect people in different ways.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e21025-e21025
Author(s):  
Anthony L. Schwartz ◽  
Pulak Nath ◽  
Elizabeth Lessey-Morillon ◽  
Lisa Ridnour ◽  
Michael Allgaeuer ◽  
...  

e21025 Background: Irradiation (IR) combined with chemotherapy is the post-surgical standard of care treatment for melanoma, but metastasis still results in high mortality rates. Immune checkpoint inhibitors such as cytotoxic T-lymphocyte antigen-4 (CTLA4) have proven effective for immunotherapy of melanoma. CTLA-4 is up-regulated post-T cell activation and blockade enhances tumor responses in immunocompetent rodents and humans. Trials suggest that combinations of immune checkpoint inhibitors are more efficacious than single agents, but tumors remain resistant. We are investigating CD47 blockade for the treatment of cancer. CD47 is frequently elevated in cancers and serves as an inhibitory receptor for thrombospondin-1 on immune cells in the tumor stroma. CD47 blockade on CD8 T or tumor cells significantly enhances immune-targeted tumor cell killing post-IR compared to IR alone. Here we explore the potential for antisense CD47 and anti-CTLA4 therapy alone or in combination with IR using a syngeneic mouse melanoma model. Methods: C57BL/6 mice were inoculated with 1x106B16F10 melanoma cells in the hind limb and treated with 10 Gy IR combined with CTLA4 blocking antibody, CD47 translational blocking morpholino, or the combination of CTLA4/CD47 therapies. Granzyme B along with CD4/CD8 T cell infiltration were examined in tumors. Histology was evaluated for CD3 and necrosis. Results: The combination of CD47/CTLA4 with IR significantly increased survival by 25% compared to IR/CTLA4 alone at 50 days. Granzyme B expression was significantly increased in IR mice with CTLA4/CD47 combination, which correlated with infiltration of CD8+ T cells and a concomitant decrease in Gr1+CD11b suppressor cells compared to controls. In non-IR tumors, histology revealed minimal necrosis, while all IR groups showed increased necrosis. Tumor IR in combination with CTLA4 or CD47 increased immune cell infiltration. However, the combination of IR with CTLA4/CD47 showed widespread necrosis. All groups treated with the CD47 exhibited focal hemorrhage, which was more extensive when combined with CTLA4. Conclusions: Results herein suggest IR combined CTLA4/CD47 checkpoint blockade provides a survival benefit by activating a beneficial adaptive immune response.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Narciss Mobini ◽  
Rummit Dhillon ◽  
Jason Dickey ◽  
Jordan Spoon ◽  
Kaviyon Sadrolashrafi

Recent emergence of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of cancers and produced prolonged response by boosting the immune system against tumor cells. The primary target antigens are cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), a downregulator of T-cell activation, and programmed cell death-1 receptor (PD-1), a regulator of T-cell proliferation. This enhanced immune response can induce autoimmune adverse effects in many organs. Although skin toxicities are the most common, sarcoidal inflammation with exclusive cutaneous involvement is a rare occurrence with only 6 cases reported to date. We report 2 cases with unusual features. One patient is a female who was treated for metastatic renal cell carcinoma with combination of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1). She developed deep nodules showing sarcoidal dermatitis and panniculitis on histopathologic exam. The second patient is a male with melanoma of eyelid conjunctiva who was treated prophylactically with ipilimumab. He presented with papules/plaques confined to black tattoos, where the biopsy revealed sarcoidal dermatitis. By a comprehensive literature review, we intend to raise awareness about this potential skin side effect in the growing number of patients receiving targeted immunotherapies. It is crucial to have a high index of suspicion and perform timely biopsies to implement appropriate management strategies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Bonnie L. Russell ◽  
Selisha A. Sooklal ◽  
Sibusiso T. Malindisa ◽  
Lembelani Jonathan Daka ◽  
Monde Ntwasa

Through genetic and epigenetic alterations, cancer cells present the immune system with a diversity of antigens or neoantigens, which the organism must distinguish from self. The immune system responds to neoantigens by activating naïve T cells, which mount an anticancer cytotoxic response. T cell activation begins when the T cell receptor (TCR) interacts with the antigen, which is displayed by the major histocompatibility complex (MHC) on antigen-presenting cells (APCs). Subsequently, accessory stimulatory or inhibitory molecules transduce a secondary signal in concert with the TCR/antigen mediated stimulus. These molecules serve to modulate the activation signal’s strength at the immune synapse. Therefore, the activation signal’s optimum amplitude is maintained by a balance between the costimulatory and inhibitory signals. This system comprises the so-called immune checkpoints such as the programmed cell death (PD-1) and Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and is crucial for the maintenance of self-tolerance. Cancers often evade the intrinsic anti-tumor activity present in normal physiology primarily by the downregulation of T cell activation. The blockade of the immune checkpoint inhibitors using specific monoclonal antibodies has emerged as a potentially powerful anticancer therapy strategy. Several drugs have been approved mainly for solid tumors. However, it has emerged that there are innate and acquired mechanisms by which resistance is developed against these therapies. Some of these are tumor-intrinsic mechanisms, while others are tumor-extrinsic whereby the microenvironment may have innate or acquired resistance to checkpoint inhibitors. This review article will examine mechanisms by which resistance is mounted against immune checkpoint inhibitors focussing on anti-CTL4-A and anti-PD-1/PD-Ll since drugs targeting these checkpoints are the most developed.


2018 ◽  
Vol 12 (3) ◽  
pp. 704-708 ◽  
Author(s):  
Jean R. Kuo ◽  
Amy D. Davis ◽  
Eduardo A. Rodriguez ◽  
Marcelo F. Vela ◽  
Russell I. Heigh ◽  
...  

Immune checkpoint inhibitors (ICPIs) are novel therapeutic agents targeting a variety of cancers by enhanced T cell activation. Immune-related adverse events (irAEs) commonly occur with ICPI use and can affect multiple organ systems including the gastrointestinal tract. Due to irAEs, the use of ICPIs is limited in autoimmune diseases. We present a case of microscopic colitis diagnosed after the initiation of nivolumab and a case of ipilimumab colitis and Clostridium difficile in the setting of Crohn’s colitis.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A831-A831
Author(s):  
Tienan Wang ◽  
Qing Lin ◽  
Jie Zhang

BackgroundCancer immunotherapies, including immune checkpoint inhibitors, CAR-T, cancer vaccines and bispecific antibodies, have been brought to spot light in recent years as several therapeutic strategies targeting the immune system have produced exciting clinical results. Bispecific antibody typically play dual roles in blocking the immune checkpoint and redirecting/re-boosting the function of the immune effector cells. Blinatumomab belongs to CD3 bispecific T cell engager (CD3 BiTE), which was engineered to harbor two arms binding with CD3 and CD19 simultaneously and direct CD8+ T cells to specifically recognize CD19 positive lymphoma cells to execute cytotoxicity. Approval of Blinatumomab for patients with relapse/refractory B cell acute lymphoblastic leukemia (ALL) has driven remarkable increase in combination studies of Blinatumomab with other immunotherapies such as checkpoint inhibitors.MethodsIn this study, we developed CD8+ T cytotoxic system targeting different B lymphoma cell line and fully validated the function of Blinatumomab in promoting target tumor cell lysis by primary CD8+ T cells (figure 1). In addition, we established a mixed lymphocyte and tumor system to mimic physiological TME to dissect the combinational role of Nivolumab and Blinatumomab (figure 2).ResultsThe result suggest that combinatory therapy is highly depend on the dosage of Blinatumomab and also T cell number in the TME, which might give an instruction for ongoing clinical trial design. Finally, we have employed humanized mouse models bearing Raji or Daudi tumor cells to further validate this combination treatment in vivo. Both In-vivo and In-vitro data support that Blinatumomab is dominant in activing T cell and Nivolumab can only exhibit synergistic effect under suboptimal dosage of Blinatumomab.Abstract 781 Figure 1Establishment of In vitro co-culture system for CD3 BiTEestablish in vitro human PBMC based system to validate CD3 BiTE functionAbstract 781 Figure 2Opdivo and CD3 BiTE CombinationOpdivo could further promote T cell activation under the treatment of CD3 BiTEConclusionsSuccessfully establish in vitro system to evaluate the function of CD3 BiTE and also take advantage of MLR/tumor co-culture system to demonstrate PD1 antibody could further promote T cell activation under appropriate dosage of CD3 BiTE.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A401-A401
Author(s):  
Shubham Pant ◽  
Amishi Shah ◽  
Pavlos Msaouel ◽  
Matthew Campbell ◽  
Shi-Ming Tu ◽  
...  

BackgroundMRx0518 is a novel, human gut microbiome-derived, single-strain, oral live biotherapeutic. It is a bacterium of the Enterococcus genus that was selected for development in the treatment of solid tumours for its strong in vitro and in vivo immunostimulatory activity. In vivo studies have shown that MRx0518 can inhibit tumour growth in different syngeneic cancer models as monotherapy and in combination with checkpoint inhibitors. MRx0518 has been shown to reduce Treg and increase Th1 and Tc1 lymphocyte differentiation in vitro, and increase intratumoral CD4+ and CD8+ T cells and NK cells in vivo.This phase I/II clinical study is evaluating the combination of MRx0518 and pembrolizumab in a cohort of heavily pre-treated patients refractory to immune checkpoint inhibitors (ICIs) to assess whether it is safe and can provide a clinical benefit.MethodsThe study is being conducted in two parts. Part A is complete and evaluated safety of the combination therapy in a cohort of 12 mRCC and mNSCLC patients. This data was assessed by the Safety Review Committee and it was determined appropriate to proceed to Part B. Part B is now recruiting up to 30 additional patients per indication (RCC, NSCLC or bladder cancer) at several US sites. Patients in both parts must be refractory to checkpoint inhibition. This is defined as having had an initial benefit from PD-1 pathway targeting immune checkpoint inhibition (ICI) but developing disease progression confirmed by two radiological scans ≥4 weeks apart in the absence of rapid clinical progression and within 12 weeks of last dose of ICI. Patients are treated with 1 capsule of MRx0518 (1 × 1010 to 1 × 1011 CFU) twice daily and pembrolizumab (200 mg every 3 weeks) for up to 35 cycles or until disease progression. Tumour response is assessed every 9 weeks per RECIST. Blood, stool and urine samples are collected throughout the study to evaluate immune markers and microbiome. Patients may choose to consent to tissue biopsies. The primary objective of the study is to evaluate safety of the combination by monitoring toxicities in the first cycle of treatment. Secondary objectives are to evaluate efficacy via ORR, DOR, DCR (CR, PR or SD ≥6 months) and PFS. Exploratory objectives are to evaluate biomarkers of treatment effect, impact on microbiota and OS and correlation of clinical outcome with PD-L1 CPS/TPS.ResultsN/AConclusionsN/ATrial RegistrationNCT03637803Ethics ApprovalThis study was approved by University of Texas MD Anderson’s Institutional Review Board; approval ref. 2018-0290


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi94-vi94
Author(s):  
Daniela Lorizio ◽  
Michael Weller ◽  
Manuela Silginer ◽  
Alan Epstein ◽  
Patrick Roth

Abstract The profound local immunosuppressive microenvironment is one hallmark of glioblastoma, which results in resistance to most immunotherapeutic strategies that have been explored so far. Reverting this condition in order to reinvigorate anti-glioma immunity might be a promising therapeutic approach. Transforming growth factor (TGF)-β signaling is deregulated in different cancer types and contributes to the malignant phenotype of glioma cells. Glioma-derived TGF-β is also a major immunosuppressive factor in the tumor microenvironment. Furthermore, intratumoral regulatory T (Treg) cells and activated T effector cells express high levels of the co-stimulatory immune checkpoint glucocorticoid-induced tumor necrosis factor receptor (GITR). Agonistic anti-GITR antibodies have been explored in preclinical tumor models and are under investigation in clinical trials for the treatment of solid tumors. We evaluated the effect of TGF-β and GITR targeting on anti-tumor immune responses in syngeneic mouse glioma models. In co-culture settings, GITR modulation with a GITR ligand (GITRL)-Fc fusion protein, given alone or in combination with a pharmacological TGF-β receptor inhibitor, led to increased T cell activation. Furthermore, the combined targeting of the two pathways resulted in significantly higher immune cell-mediated tumor cell killing than either treatment alone. In vivo, TGF-β inhibition and GITR signaling modulation resulted in a higher fraction of long-term surviving glioma-bearing mice than single-agent treatment. Surviving mice were resistant to tumor re-challenge, suggesting adaptive immunity as an underlying mechanism. These data support the assumption that combined immunotherapeutic strategies may represent a promising approach for the treatment of glioma.


Sign in / Sign up

Export Citation Format

Share Document