Abstract 900: Intermittent cyclophosphamide and vinorelbine reshape the immune cell environment, induce T cell clonal replacement and increase the efficacy of PD-1 inhibition in models of triple negative breast cancer

Author(s):  
Paolo Falvo ◽  
Stefania Orecchioni ◽  
Roman Hillje ◽  
Alessandro Raveane ◽  
Patrizia Mancuso ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Katherine J. Carpenter ◽  
Aurore-Cecile Valfort ◽  
Nick Steinauer ◽  
Arindam Chatterjee ◽  
Suomia Abuirqeba ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is a highly aggressive subtype that is untreatable with hormonal or HER2-targeted therapies and is also typically unresponsive to checkpoint-blockade immunotherapy. Within the tumor microenvironment dysregulated immune cell metabolism has emerged as a key mechanism of tumor immune-evasion. We have discovered that the Liver-X-Receptors (LXRα and LXRβ), nuclear receptors known to regulate lipid metabolism and tumor-immune interaction, are highly activated in TNBC tumor associated myeloid cells. We therefore theorized that inhibiting LXR would induce immune-mediated TNBC-tumor clearance. Here we show that pharmacological inhibition of LXR activity induces tumor destruction primarily through stimulation of CD8+ T-cell cytotoxic activity and mitochondrial metabolism. Our results imply that LXR inverse agonists may be a promising new class of TNBC immunotherapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dora Hammerl ◽  
John W. M. Martens ◽  
Mieke Timmermans ◽  
Marcel Smid ◽  
Anita M. Trapman-Jansen ◽  
...  

AbstractOnly a subgroup of triple-negative breast cancer (TNBC) responds to immune checkpoint inhibitors (ICI). To better understand lack of response to ICI, we analyze 681 TNBCs for spatial immune cell contextures in relation to clinical outcomes and pathways of T cell evasion. Excluded, ignored and inflamed phenotypes can be captured by a gene classifier that predicts prognosis of various cancers as well as anti-PD1 response of metastatic TNBC patients in a phase II trial. The excluded phenotype, which is associated with resistance to anti-PD1, demonstrates deposits of collagen-10, enhanced glycolysis, and activation of TGFβ/VEGF pathways; the ignored phenotype, also associated with resistance to anti-PD1, shows either high density of CD163+ myeloid cells or activation of WNT/PPARγ pathways; whereas the inflamed phenotype, which is associated with response to anti-PD1, revealed necrosis, high density of CLEC9A+ dendritic cells, high TCR clonality independent of neo-antigens, and enhanced expression of T cell co-inhibitory receptors.


2020 ◽  
Author(s):  
Si Qiu ◽  
Ruoxi Hong ◽  
Zhenkun Zhuang ◽  
Linnan Zhu ◽  
Yuan Li ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype, which recently attracts great interest for immune therapeutic development. In this context, in-depth understanding of TNBC immune landscape is highly demanded.Results: Here we report full-length single-cell RNA sequencing results of 9683 tumor-infiltrated immune cells isolated from 14 treatment naïve TNBC tumors, where 22 immune cell subsets, including T cells, macrophages, B cells, and DCs have been characterized. We identify a new T cell subset, CD8+CXCL8+ T cell, which associates with poor survival, and a subset of “pre-exhaustion” T cell cluster, which is predictive of favorable prognosis. A novel immune cell subset comprised of TCR+ macrophages, is found to be widely distributed in TNBC tumors. Further analyses reveal an up-regulation of molecules associated with TCR signaling and cytotoxicity in these immune cells.Conclusions: Altogether, our study provides a valuable resource to understand the immune ecosystem of TNBC. The novel immune cell subsets reported herein might be functionally important in cancer immunity. These data will be helpful for the immunotherapeutic strategy design of this disease.


2021 ◽  
Vol 85 ◽  
pp. 104664
Author(s):  
Mohan Li ◽  
Kexin Zheng ◽  
Shiliang Ma ◽  
Pengpeng Hu ◽  
Bo Yuan ◽  
...  

2021 ◽  
Vol 360 ◽  
pp. 104262
Author(s):  
Pengxiang Yang ◽  
Xingjian Cao ◽  
Huilong Cai ◽  
Panfeng Feng ◽  
Xiang Chen ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 6 (28) ◽  
pp. 25356-25367 ◽  
Author(s):  
Claudia Paret ◽  
Petra Simon ◽  
Kirsten Vormbrock ◽  
Christian Bender ◽  
Anne Kölsch ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A644-A644
Author(s):  
Anita Mehta ◽  
Madeline Townsend ◽  
Madisson Oliwa ◽  
Patrice Lee ◽  
Nicholas Saccomano ◽  
...  

BackgroundPoly(ADP-ribose) polymerase inhibitors (PARPi) have improved the outcomes of BRCA-associated breast cancer; however, treatment responses are often not durable. Our preclinical studies demonstrated that PARPi activates the cGAS/STING pathway and recruitment of anti-tumor CD8+ T-cells that are required for tumor clearance [1]. These studies contributed to development of clinical trials testing PARPi plus immune checkpoint blockade (ICB). Unfortunately, early phase trials of PARPi + ICB have not yet suggested efficacy will be superior to PARPi monotherapy. Lack of demonstrated clinical synergy between PARPi + ICB underscores the need to study the tumor microenvironment (TME) during PARPi therapy to identify optimal strategies to enhance T-cell activation. We recently showed that PARPi induces CSF-1R+ suppressive tumor associated macrophages (TAMs) that restrict antitumor immune responses, contributing to PARPi resistance [2]. Removing TAMs with anti-CSF-1R therapy in combination with PARPi significantly enhanced overall survival (OS) compared to PARPi monotherapy in preclinical models [2]. Here, we investigate how modulating TAMs can enhance PARPi + ICB.MethodsMice bearing BRCA1-deficient TNBC (K14-Cre;Brca1f/f;p53f/f) tumors were treated for 98 days with PARPi (Talazoparib) ± small molecule inhibitor of CSF-1R (ARRAY-382; CSF-1Ri) ± anti-PD-1 and then followed for survival. Flow cytometry was employed to elucidate changes in the TME after treatment.ResultsPARPi conferred a significant survival advantage over vehicle treated mice (median OS 33 v. 14 days; p=0.0034) and 2/8 PARPi-treated mice experienced complete tumor clearance at day 98. PARPi + CSF-1Ri treated mice (median OS 140 days) remarkably cleared 7/10 tumors by day 98. The addition of anti-PD-1 to PARPi did not enhance OS compared to PARPi monotherapy. The triple combination of anti-PD-1 + PARPi + CSF-1Ri has not yet significantly enhanced the median OS compared to PARPi + CSF-1Ri (ongoing; 168 v. 140 days); nor did it increase clearance of tumor by day 98 (7/10). However, the triple combination led to superior long term tumor clearance. At day 161 the triple combination exhibited 5/10 tumor free mice compared to 2/10 treated with PARPi + CSF-1Ri. To elucidate how CSR-1Ri enhanced PARPi + ICB responses, flow cytometry was performed and revealed increased expression of the co-stimulatory molecule CD80, reduced tissue resident macrophages (CX3CR1+) and lower CSF-1R expression compared to PARPi + ICB.ConclusionsThese data suggest that targeting immunosuppressive macrophages may induce a favorable anti-tumor immune response and enhance responses to PARPi plus ICB. We are currently evaluating the adaptive immune response in this context.ReferencesPantelidou, C., et al., PARP inhibitor efficacy depends on CD8+ T cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discovery, 2019: p. CD-18-1218.Mehta, A.K., et al., Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat Cancer, 2021. 2(1): p. 66–82.


Sign in / Sign up

Export Citation Format

Share Document