Abstract P3-05-23: Novel, non-uterotrophic, selective estrogen mimics cause regression of tamoxifen-resistant breast cancer in 2D and 3D cultures and in mouse xenograft models

Author(s):  
Gregory RJ Thatcher ◽  
Rui Xiong ◽  
Hitisha K Patel ◽  
Jiong Zhao ◽  
Xiao Liang ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4288
Author(s):  
Fernanda Malhão ◽  
Ana Catarina Macedo ◽  
Carla Costa ◽  
Eduardo Rocha ◽  
Alice Abreu Ramos

Fucoxanthin (Fx) is a carotenoid derived from marine organisms that exhibits anticancer activities. However, its role as a potential drug adjuvant in breast cancer (BC) treatment is still poorly explored. Firstly, this study investigated the cytotoxic effects of Fx alone and combined with doxorubicin (Dox) and cisplatin (Cis) on a panel of 2D-cultured BC cell lines (MCF7, SKBR3 and MDA-MB-231) and one non-tumoral cell line (MCF12A). Fucoxanthin induced cytotoxicity against all the cell lines and potentiated Dox cytotoxic effects towards the SKBR3 and MDA-MB-231 cells. The combination triggering the highest cytotoxicity (Fx 10 µM + Dox 1 µM in MDA-MB-231) additionally showed significant induction of cell death and genotoxic effects, relative to control. In sequence, the same combination was tested on 3D cultures using a multi-endpoint approach involving bioactivity assays and microscopy techniques. Similar to 2D cultures, the combination of Fx and Dox showed higher cytotoxic effects on 3D cultures compared to the isolated compounds. Furthermore, this combination increased the number of apoptotic cells, decreased cell proliferation, and caused structural and ultrastructural damages on the 3D models. Overall, our findings suggest Fx has potential to become an adjuvant for Dox chemotherapy regimens in BC treatment.


Cytotherapy ◽  
2018 ◽  
Vol 20 (5) ◽  
pp. S27
Author(s):  
H. Allen ◽  
N. Shraga-Heled ◽  
M. Blumenfeld ◽  
T. Dego-Ashto ◽  
D. Fuchs-Telem ◽  
...  

2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Tomohiro Tanaka ◽  
Tomokazu Ohishi ◽  
Teizo Asano ◽  
Junko Takei ◽  
Ren Nanamiya ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esmee Koedoot ◽  
Liesanne Wolters ◽  
Marcel Smid ◽  
Peter Stoilov ◽  
Gerhard A. Burger ◽  
...  

AbstractScreening for effective candidate drugs for breast cancer has shifted from two-dimensional (2D) to three-dimensional (3D) cultures. Here we systematically compared the transcriptomes of these different culture conditions by RNAseq of 14 BC cell lines cultured in both 2D and 3D conditions. All 3D BC cell cultures demonstrated increased mitochondrial metabolism and downregulated cell cycle programs. Luminal BC cells in 3D demonstrated overall limited reprogramming. 3D basal B BC cells showed increased expression of extracellular matrix (ECM) interaction genes, which coincides with an invasive phenotype not observed in other BC cells. Genes downregulated in 3D were associated with metastatic disease progression in BC patients, including cyclin dependent kinases and aurora kinases. Furthermore, the overall correlation of the cell line transcriptome to the BC patient transcriptome was increased in 3D cultures for all TNBC cell lines. To define the most optimal culture conditions to study the oncogenic pathway of interest, an open source bioinformatics strategy was established.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Özge Şükrüoğlu Erdoğan ◽  
Seda Kılıç Erciyas ◽  
Ayhan Bilir ◽  
Şeref Buğra Tunçer ◽  
Demet Akdeniz Ödemiş ◽  
...  

Epigenetic changes have major role in the normal development and programming of gene expression. Aberrant methylation results in carcinogenesis. The primary objective of our study is to determine whether primary tumor tissue and cultured tumor cells in 2D and 3D tissue culture systems have the same methylation signature forPAX5,TMPRSS2, andSBDS. These findings will play an important role in developing in vitro model system to understand the effect of methylation inhibitors on primary tumor tissue. In a previous studyPAX5,TMPRSS2, andSBDSgenes that we are investigating were reported to be methylated more than 60% in breast cancer and malignant melanoma cell lines. However, these genes have never been studied in primary tumor tissues. Thus, primary tumor tissues of breast cancer and malignant melanoma were first grown in 2D and 3D cultures. Then these two types of tumor tissues and their 2D and 3D cultures were investigated for changes considering methylation levels inPAX5,TMPRSS2, andSBDSgenes using real-time polymerase chain reaction. No differences were observed in the primary tissues and culture systems for bothPAX5andTMPRSS2in malignant melanoma tissues. We found thatPAX5gene was an efficient marker to measure the effects of methylation inhibitors for in vitro systems for malignant melanoma tissue.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 448 ◽  
Author(s):  
Fernanda Malhão ◽  
Alice A. Ramos ◽  
Suradet Buttachon ◽  
Tida Dethoup ◽  
Anake Kijjoa ◽  
...  

Preussin, a hydroxyl pyrrolidine derivative isolated from the marine sponge-associated fungus Aspergillus candidus KUFA 0062, displayed anticancer effects in some cancer cell lines, including MCF7. Preussin was investigated for its cytotoxic and antiproliferative effects in breast cancer cell lines (MCF7, SKBR3, and MDA-MB-231), representatives of major breast cancers subtypes, and in a non-tumor cell line (MCF12A). Preussin was first tested in 2D (monolayer), and then in 3D (multicellular aggregates), cultures, using a multi-endpoint approach for cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), resazurin and lactate dehydrogenase (LDH)) and proliferative (5-bromo-2′-deoxyuridine (BrdU)) assays, as well as the analysis of cell morphology by optical/electron microscopy and immunocytochemistry for caspase-3 and ki67. Preussin affected cell viability and proliferation in 2D and 3D cultures in all cell lines tested. The results in the 3D culture showed the same tendency as in the 2D culture, however, cells in the 3D culture were less responsive. The effects were observed at different concentrations of preussin, depending on the cell line and assay method. Morphological study of preussin-exposed cells revealed cell death, which was confirmed by caspase-3 immunostaining. In view of the data, we recommend a multi-endpoint approach, including histological evaluation, in future assays with the tested 3D models. Our data showed cytotoxic and antiproliferative activities of preussin in breast cancer cell lines in 2D and 3D cultures, warranting further studies for its anticancer potential.


2020 ◽  
Author(s):  
T. E. Kähkönen ◽  
M. Toriseva ◽  
N. Petruk ◽  
A.-R. Virta ◽  
A. Maher ◽  
...  

Abstract Purpose Fibroblast growth factor receptors (FGFR) and pathways are important players in breast cancer (BC) development. They are commonly altered, and BCs exhibiting FGFR gene amplification are currently being studied for drug development. Here, we aimed to compare the effects of three FGFR inhibitors (FGFRis), i.e., non-selective TKI258 and selective BGJ398 and AZD4547, on different BC-derived cell lines (BCCs) and primary tissues. Methods The human BCCs MCF-7 and MDA-MB-231(SA) (wild-type FGFR) and MFM223 (amplified FGFR1 and FGFR2) were analyzed for FGFR expression using qRT-PCR, and the effects of FGFRis on FGFR signaling by Western blotting. The effects of FGFRis on proliferation, viability, migration and invasion of BCCs were assessed in 2D cultures using live-cell imaging, and in 3D cultures using phenotypic analysis of organoids. To study radio-sensitization, FGFRi treatment was combined with irradiation. Patient-derived BC samples were treated with FGFRis in explant cultures and immunostained for Ki67 and cleaved caspase 3. Results We found that all FGFRis tested decreased the growth and viability of BC cells in 2D and 3D cultures. BGJ398 and AZD4547 were found to be potent at low concentrations in FGFR-amplified MFM233 cells, whereas higher concentrations were required in non-amplified MCF7 and MDA-MB-231(SA) cells. TKI258 inhibited the migration and invasion, whereas BGJ398 and AZD4547 only inhibited the invasion of MDA-MB-231(SA) cells. FGFRi treatment of MCF7 and MFM223 cells enhanced the inhibitory effect of radiotherapy, but this effect was not observed in MDA-MB-231(SA) cells. FGFRi-treated primary BC explants with moderate FGFR levels showed a tendency towards decreased proliferation and increased apoptosis. Conclusions Our results indicate that, besides targeting FGFR-amplified BCs with selective FGFRis, also BCs without FGFR amplification/activation may benefit from FGFRi-treatment. Combination with other treatment modalities, such as radiotherapy, may allow the use of FGFRis at relatively low concentrations and, thereby, contribute to better BC treatment outcomes.


Sign in / Sign up

Export Citation Format

Share Document