Abstract B30: Discovery and functional characterization of novel anti-PD-1 antibodies using ex vivo cell-based assays, single-cell immunoprofiling, and in vivo studies in humanized mice

Author(s):  
Felix Scheuplein ◽  
Sheila Ranganath ◽  
Thomas McQuade ◽  
Lei Wang ◽  
Vikki Spaulding ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Satwik Pasani ◽  
Sarthak Sahoo ◽  
Mohit Kumar Jolly

Metastasis remains an unsolved clinical challenge. Two crucial features of metastasizing cancer cells are (a) their ability to dynamically move along the epithelial–hybrid–mesenchymal spectrum and (b) their tumor initiation potential or stemness. With increasing functional characterization of hybrid epithelial/mesenchymal (E/M) phenotypes along the spectrum, recent in vitro and in vivo studies have suggested an increasing association of hybrid E/M phenotypes with stemness. However, the mechanistic underpinnings enabling this association remain unclear. Here, we develop a mechanism-based mathematical modeling framework that interrogates the emergent nonlinear dynamics of the coupled network modules regulating E/M plasticity (miR-200/ZEB) and stemness (LIN28/let-7). Simulating the dynamics of this coupled network across a large ensemble of parameter sets, we observe that hybrid E/M phenotype(s) are more likely to acquire stemness relative to “pure” epithelial or mesenchymal states. We also integrate multiple “phenotypic stability factors” (PSFs) that have been shown to stabilize hybrid E/M phenotypes both in silico and in vitro—such as OVOL1/2, GRHL2, and NRF2—with this network, and demonstrate that the enrichment of hybrid E/M phenotype(s) with stemness is largely conserved in the presence of these PSFs. Thus, our results offer mechanistic insights into recent experimental observations of hybrid E/M phenotype(s) that are essential for tumor initiation and highlight how this feature is embedded in the underlying topology of interconnected EMT (Epithelial-Mesenchymal Transition) and stemness networks.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 268 ◽  
Author(s):  
Mariangela Centrone ◽  
Patrizia Gena ◽  
Marianna Ranieri ◽  
Annarita Di Mise ◽  
Mariagrazia D’Agostino ◽  
...  

Dietary habits are crucially important to prevent the development of lifestyle-associated diseases. Diets supplemented with chickpeas have numerous benefits and are known to improve body fat composition. The present study was undertaken to characterize two genetically and phenotypically distinct accessions, MG_13 and PI358934, selected from a global chickpea collection. Rat hepatoma FaO cells treated with a mixture of free fatty acids (FFAs) (O/P) were used as an in vitro model of hepatic steatosis. In parallel, a high-fat diet (HFD) animal model was also established. In vitro and in vivo studies revealed that both chickpea accessions showed a significant antioxidant ability. However, only MG_13 reduced the lipid over-accumulation in steatotic FaO cells and in the liver of HFD fed mice. Moreover, mice fed with HFD + MG_13 displayed a lower level of glycemia and aspartate aminotransferase (AST) than HFD mice. Interestingly, exposure to MG_13 prevented the phosphorylation of the inflammatory nuclear factor kappa beta (NF-kB) which is upregulated during HFD and known to be linked to obesity. To conclude, the comparison of the two distinct chickpea accessions revealed a beneficial effect only for the MG_13. These findings highlight the importance of studies addressing the functional characterization of chickpea biodiversity and nutraceutical properties.


Blood ◽  
2011 ◽  
Vol 118 (8) ◽  
pp. 2105-2115 ◽  
Author(s):  
Elisa Ciraci ◽  
Silvia Della Bella ◽  
Ombretta Salvucci ◽  
Cristina Rofani ◽  
Marta Segarra ◽  
...  

Abstract A precise identification of adult human hemangioblast is still lacking. To identify circulating precursors having the developmental potential of the hemangioblast, we established a new ex vivo long-term culture model supporting the differentiation of both hematopoietic and endothelial cell lineages. We identified from peripheral blood a population lacking the expression of CD34, lineage markers, CD45 and CD133 (CD34−Lin−CD45−CD133− cells), endowed with the ability to differentiate after a 6-week culture into both hematopoietic and endothelial lineages. The bilineage potential of CD34−Lin−CD45−CD133− cells was determined at the single-cell level in vitro and was confirmed by transplantation into NOD/SCID mice. In vivo, CD34−Lin−CD45−CD133− cells showed the ability to reconstitute hematopoietic tissue and to generate functional endothelial cells that contribute to new vessel formation during tumor angiogenesis. Molecular characterization of CD34−Lin−CD45−CD133− cells unveiled a stem cell profile compatible with both hematopoietic and endothelial potentials, characterized by the expression of c-Kit and CXCR4 as well as EphB4, EphB2, and ephrinB2. Further molecular and functional characterization of CD34−Lin−CD45−CD133− cells will help dissect their physiologic role in blood and blood vessel maintenance and repair in adult life.


2022 ◽  
Vol 79 (1) ◽  
Author(s):  
María Guadalupe Herrera-Hernández ◽  
Neda Razzaghi ◽  
Pol Fernandez-Gonzalez ◽  
Laia Bosch-Presegué ◽  
Guillem Vila-Julià ◽  
...  

AbstractMutations in the photoreceptor protein rhodopsin are known as one of the leading causes of retinal degeneration in humans. Two rhodopsin mutations, Y102H and I307N, obtained in chemically mutagenized mice, are currently the subject of increased interest as relevant models for studying the process of retinal degeneration in humans. Here, we report on the biochemical and functional characterization of the structural and functional alterations of these two rhodopsin mutants and we compare them with the G90V mutant previously analyzed, as a basis for a better understanding of in vivo studies. This mechanistic knowledge is fundamental to use it for developing novel therapeutic approaches for the treatment of inherited retinal degeneration in retinitis pigmentosa. We find that Y102H and I307N mutations affect the inactive–active equilibrium of the receptor. In this regard, the mutations reduce the stability of the inactive conformation but increase the stability of the active conformation. Furthermore, the initial rate of the functional activation of transducin, by the I307N mutant is reduced, but its kinetic profile shows an unusual increase with time suggesting a profound effect on the signal transduction process. This latter effect can be associated with a change in the flexibility of helix 7 and an indirect effect of the mutation on helix 8 and the C-terminal tail of rhodopsin, whose potential role in the functional activation of the receptor has been usually underestimated. In the case of the Y102H mutant, the observed changes can be associated with conformational alterations affecting the folding of the rhodopsin intradiscal domain, and its presumed involvement in the retinal binding process by the receptor.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A669-A669
Author(s):  
Maria Cardenas ◽  
Nataliya Prokhnevska ◽  
Caroline Jansen ◽  
Viraj Master ◽  
Haydn Kissick

BackgroundCD4 T cells can differentiate into multiple effector subsets that can mediate variable functions. In this work we aim to understand how CD4 T cells differentiate in response to tumor antigens and their respective function in the anti-tumor response.MethodsTumor tissue was collected from patients undergoing surgery at Emory University Hospital. Activated PD1+ CD45RA- tumor infiltrating CD4 T cells were sent for 10X single cell RNA-seq. Tumor samples were also processed for flow cytometry and ex vivo functional analyses. For in vivo studies, prostate cancer mouse model expressing the LCMV glycoprotein (TRAMPC1-GP) was used, as well as LCMV Armstrong infection.ResultsTo characterize the heterogeneity of CD4 T cells infiltrating kidney tumors, we performed single cell RNAseq. We found three distinct activated (PD1+ CD45RA-) CD4 T cell populations. Two effector clusters consisting of Th1-like (EOMES+) and Treg (FOXP3+) cells, and a third cluster expressing TCF1, and genes associated with stemness and survival that did not fit defined CD4 effector lineages. We further confirmed these data by flow cytometry and found the same tumor infiltrating CD4 subsets in 100 kidney cancer patients. When placed in culture under different polarization conditions, tumor TCF1+ CD4 T cells proliferated and differentiated into the Th1-like and Treg effector populations found in the tumor, in addition to other effector lineages (Th1, Tfh) given the appropriate conditions, while the Th1-like and Treg cells underwent no proliferation or phenotype changes. These data suggests that the TCF1+ CD4s act as activated unpolarized precursors to the effector subsets in the tumor. To further test this hypothesis in vivo, we adoptively transferred tumor specific (SMARTA) CD4 T cells into mice followed by TRAMPC1-GP tumor inoculation. Transferred SMARTAs activated and first acquired a TCF1+ phenotype in the TDLN prior to predominantly differentiating into Tregs in the tumor. Given their plasticity in vitro, we asked whether TCF1+ SMARTAs primed in tumors were destined to differentiate into Tregs. To test this, we transferred 4-week activated TCF1+ SMARTAs from TDLNs of TRAMPC1-GP mice into naïve mice that were immediately infected with LCMV Armstrong. We found that the transferred SMARTAs differentiated into Th1 and Tfh cells in response to the virus, similar to the endogenous virus specific CD4 T cells.ConclusionsOverall, this work shows that CD4 T cells remain in an activated phenotype in the tumor with the capacity to differentiate into non-suppressive effector lineages given the appropriate conditions that may benefit the anti-tumor response.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


1994 ◽  
Vol 72 (05) ◽  
pp. 659-662 ◽  
Author(s):  
S Bellucci ◽  
W Kedra ◽  
H Groussin ◽  
N Jaillet ◽  
P Molho-Sabatier ◽  
...  

SummaryA double-blind, placebo-controlled randomized study with BAY U3405, a specific thromboxane A2 (TX A2) receptor blocker, was performed in patients suffering from severe stade II limb arteriopathy. BAY U3405 or placebo was administered in 16 patients at 20 mg four times a day (from day 1 to day 3). Hemostatic studies were done before therapy, and on day 2 and day 3 under therapy. On day 3, BAY U3405 was shown to induce a highly statistically significant decrease of the velocity and the intensity of the aggregations mediated by arachidonic acid (56 ± 37% for the velocity, 58 ± 26% for the intensity) or by U46619 endoperoxide analogue (36 ± 35% for the velocity, 37 ± 27% for the intensity). Similar results were already observed on day 2. By contrast, such a decrease was not noticed with ADP mediated platelet aggregation. Furthermore, plasma levels of betathrombo-globulin and platelet factor 4 remained unchanged. Peripheral hemodynamic parameters were also studied. The peripheral blood flow was measured using a Doppler ultrasound; the pain free walking distance and the total walking ability distance were determined under standardized conditions on a treadmill. These last two parameters show a trend to improvement which nevertheless was not statistically significant. All together these results encourage further in vivo studies using BAY U3405 or related compounds on a long-term administration.


Author(s):  
Y Madhusudan Rao ◽  
Gayatri P ◽  
Ajitha M ◽  
P. Pavan Kumar ◽  
Kiran kumar

Present investigation comprises the study of ex-vivo skin flux and in-vivo pharmacokinetics of Thiocolchicoside (THC) from transdermal films. The films were fabricated by solvent casting technique employing combination of hydrophilic and hydrophobic polymers. A flux of 18.08 µg/cm2h and 13.37µg/cm2h was achieved for optimized formulations containing 1, 8-cineole and oleic acid respectively as permeation enhancers. The observed flux values were higher when compared to passive control (8.66 µg/cm2h). Highest skin permeation was observed when 1,8-cineole was used as chemical permeation enhancer and it considerably (2-2.5 fold) improved the THC transport across the rat skin. In vivo studies were performed in rabbits and samples were analysed by LC-MS-MS. The mean area under the curve (AUC) values of transdermal film showed about 2.35 times statistically significant (p<0.05) improvement in bioavailability when compared with the oral administration of THC solution. The developed transdermal therapeutic systems using chemical permeation enhancers were suitable for drugs like THC in effective management of muscular pain.    


2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


Sign in / Sign up

Export Citation Format

Share Document