CD95-Dependent T-Cell Killing by Glioma Cells Expressing CD95 Ligand: More on Tumor Immune Escape, the CD95 Counterattack, and the Immune Privilege of the Brain

1997 ◽  
Vol 7 (5) ◽  
pp. 282-288 ◽  
Author(s):  
Michael Weller ◽  
Christoph Weinstock ◽  
Christine Will ◽  
Bettina Wagenknecht ◽  
Johannes Dichgans ◽  
...  
2021 ◽  
Vol 9 (7) ◽  
pp. e002844
Author(s):  
Alexander Stein ◽  
Donjete Simnica ◽  
Christoph Schultheiß ◽  
Rebekka Scholz ◽  
Joseph Tintelnot ◽  
...  

BackgroundIn patients with microsatellite stable (MSS) metastatic colorectal cancer (mCRC), immune checkpoint blockade is ineffective, and combinatorial approaches enhancing immunogenicity need exploration.MethodsWe treated 43 patients with predominantly microsatellite stable RAS/BRAF wild-type mCRC on a phase II trial combining chemotherapy with the epidermal growth factor receptor antibody cetuximab and the programmed cell death ligand 1 (PD-L1) antibody avelumab. We performed next-generation gene panel sequencing for mutational typing of tumors and liquid biopsy monitoring as well as digital droplet PCR to confirm individual mutations. Translational analyses included tissue immunohistochemistry, multispectral imaging and repertoire sequencing of tumor-infiltrating T cells. Detected PD-L1 mutations were mechanistically validated in CRISPR/Cas9-generated cell models using qRT-PCR, immunoblotting, flow cytometry, complement-dependent cytotoxicity assay, antibody-dependent cytotoxicity by natural killer cell degranulation assay and LDH release assay as well as live cell imaging of T cell mediated tumor cell killing.ResultsCirculating tumor DNA showed rapid clearance in the majority of patients mirroring a high rate of early tumor shrinkage. In 3 of 13 patients expressing the high-affinity Fcγ receptor 3a (FcγR3a), tumor subclones with PD-L1 mutations were selected that led to loss of tumor PD-L1 by nonsense-mediated RNA decay in PD-L1 K162fs and protein degradation in PD-L1 L88S. As a consequence, avelumab binding and antibody-dependent cytotoxicity were impaired, while T cell killing of these variant clones was increased. Interestingly, PD-L1 mutant subclones showed slow selection dynamics reversing on avelumab withdrawal and patients with such subclones had above-average treatment benefit. This suggested that the PD-L1 mutations mediated resistance to direct antitumor effects of avelumab, while at the same time loss of PD-L1 reduced biological fitness by enhanced T cell killing limiting subclonal expansion.ConclusionThe addition of avelumab to standard treatment appeared feasible and safe. PD-L1 mutations mediate subclonal immune escape to avelumab in some patients with mCRC expressing high-affinity FcγR3a, which may be a subset experiencing most selective pressure. Future trials evaluating the addition of avelumab to standard treatment in MSS mCRC are warranted especially in this patient subpopulation.Trial registration numberNCT03174405.


2015 ◽  
Vol 11 (12) ◽  
pp. e1005364 ◽  
Author(s):  
Ilseyar Akhmetzyanova ◽  
Malgorzata Drabczyk ◽  
C. Preston Neff ◽  
Kathrin Gibbert ◽  
Kirsten K. Dietze ◽  
...  

Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Man-Chin Chen ◽  
Christian Ronquillo Pangilinan ◽  
Che-Hsin Lee

Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world’s leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Philippe Fournier ◽  
Volker Schirrmacher

New approaches of therapeutic cancer vaccination are needed to improve the antitumor activity of T cells from cancer patients. We studied over the last years the activation of human T cells for tumor attack. To this end, we combined the personalized therapeutic tumor vaccine ATV-NDV—which is obtained by isolation, shortin vitroculture, irradiation, and infection of patient's tumor cells by Newcastle Disease Virus (NDV)—with bispecific antibodies (bsAbs) binding to this vaccine and introducing anti-CD3 (signal 1) and anti-CD28 (signal 2) antibody activities. This vaccine called ATV-NDV/bsAb showed the unique ability to reactivate a preexisting potentially anergized antitumor memory T cell repertoire. But it also activated naive T cells to have antitumor propertiesin vitroandin vivo. This innovative concept of direct activation of cancer patients' T cells via cognate and noncognate interactions provides potential for inducing strong antitumor activities aiming at overriding T cell anergy and tumor immune escape mechanisms.


Author(s):  
Bufang Xu ◽  
Fengjie Liu ◽  
Yumei Gao ◽  
Jingru Sun ◽  
Yingyi Li ◽  
...  

Cutaneous T cell lymphoma is a generally indolent disease derived from skin-homing mature T cells. However, in advanced stages, CTCL may manifest as aggressive clinical behavior and lead to a poor prognosis. The mechanism of disease progression in CTCL remains unknown. Here, with a large clinical cohort, we identified that IKZF2, an essential transcription factor during T cell development and differentiation, showed stage-dependent overexpression in the malignant T cells in MF lesions. IKZF2 is specifically over-expressed in advanced-stage MF lesions, correlates with poor patient prognosis. Mechanistically, IKZF2 overexpression promotes CTCL progression via inhibiting malignant cell apoptosis and may contribute to tumor immune escape by downregulating MHC-II molecules and up-regulating the production of anti-inflammatory cytokine IL-10 by malignant T cells. These results demonstrate the important role of IKZF2 in high-risk CTCL and pave the way for future targeted therapy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jiayu Wang ◽  
Hongya Wu ◽  
Yanjun Chen ◽  
Jinghan Zhu ◽  
Linqing Sun ◽  
...  

AbstractNegative immune checkpoint blockade immunotherapy has shown potential for multiple malignancies including colorectal cancer (CRC). B7-H5, a novel negative immune checkpoint regulator, is highly expressed in tumor tissues and promotes tumor immune escape. However, the clinical significance of B7-H5 expression in CRC and the role of B7-H5 in the tumor microenvironment (TME) has not been fully clarified. In this study, we observed that high B7-H5 expression in CRC tissues was significantly correlated with the lymph node involvement, AJCC stage, and survival of CRC patients. A significant inverse correlation was also observed between B7-H5 expression and CD8+ T-cell infiltration in CRC tissues. Kaplan−Meier analysis showed that patients with high B7-H5 expression and low CD8+ T-cell infiltration had the worst prognosis in our cohort of CRC patients. Remarkably, both high B7-H5 expression and low CD8+ T infiltration were risk factors for overall survival. Additionally, B7-H5 blockade using a B7-H5 monoclonal antibody (B7-H5 mAb) effectively suppressed the growth of MC38 colon cancer tumors by enhancing the infiltration and Granzyme B production of CD8+ T cells. Importantly, the depletion of CD8+ T cells obviously abolished the antitumor effect of B7-H5 blockade in the MC38 tumors. In sum, our findings suggest that B7-H5 may be a valuably prognostic marker for CRC and a potential target for CRC immunotherapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Verena Vonwirth ◽  
Yagmur Bülbül ◽  
Anke Werner ◽  
Hakim Echchannaoui ◽  
Johannes Windschmitt ◽  
...  

Myeloid cell arginase-mediated arginine depletion with consecutive inhibition of T cell functions is a key component of tumor immune escape. Both, granulocytic myeloid-derived suppressor cells (G-MDSC) and conventional mature human polymorphonuclear neutrophil granulocytes (PMN) express high levels of arginase 1 and can act as suppressor cells of adaptive anti-cancer immunity. Here we demonstrate that pharmacological inhibition of PMN-derived arginase 1 not only prevents the suppression of T cell functions but rather leads to a strong hyperactivation of T cells. Human PMN were incubated in cell culture medium in the absence or presence of an arginase inhibitor. T cells from healthy donors were then activated either polyclonally or in an antigen-specific manner in the supernatants of the PMN cultures at different PMN-T cell ratios. T cell proliferation was completely suppressed in these supernatants in the absence of an arginase inhibitor. Arginase inhibition led to a strong hyperinduction of T cell proliferation, which exceeded control activation conditions up to 25-fold. The hyperinduction was correlated with higher PMN-T cell ratios and was only apparent when PMN arginase activity was blocked sufficiently. The T cell stimulatory factor was liberated very early by PMN and was present in the < 3 kDa fraction of the PMN supernatants. Increased T cell production of specific proinflammatory cytokines by PMN supernatant in the presence of arginase inhibitor was apparent. Upon arginase inhibition, downregulation of important T cell membrane activation and costimulation proteins was completely prevented or de novo induction accelerated. Antigen-specific T cell cytotoxicity against tumor cells was enhanced by PMN supernatant itself and could be further increased by PMN arginase blockade. Finally, we analyzed anergic T cells from multiple myeloma patients and noticed a complete reversal of anergy and the induction of strong proliferation upon T cell activation in PMN supernatants by arginase inhibition. In summary, we discovered a potent PMN-mediated hyperactivation of human T cells, which is apparent only when PMN arginase-mediated arginine depletion is concurrently inhibited. Our findings are clearly relevant for the analysis and prevention of human tumor immune escape in conjunction with the application of arginase inhibitors already being developed clinically.


2019 ◽  
Vol 129 (12) ◽  
pp. 5400-5410 ◽  
Author(s):  
Scott R. Walsh ◽  
Boris Simovic ◽  
Lan Chen ◽  
Donald Bastin ◽  
Andrew Nguyen ◽  
...  

Author(s):  
Yatong Chen ◽  
Jing Xu ◽  
Xiaodong Wu ◽  
Hui Yao ◽  
Zhou Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document