Gene Expression of FTO in Human Subcutaneous Adipose Tissue, Peripheral Blood Mononuclear Cells and Adipocyte Cell Line

2010 ◽  
Vol 3 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Tiina Lappalainen ◽  
Marjukka Kolehmainen ◽  
Ursula Schwab ◽  
Leena Pulkkinen ◽  
Vanessa D.F. de Mello ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bàrbara Reynés ◽  
Evert M. van Schothorst ◽  
Jaap Keijer ◽  
Andreu Palou ◽  
Paula Oliver

AbstractAnimal studies, mostly performed in rodents, show the beneficial anti-obesity effects of cold studies. This is due to thermogenic activation of brown adipose tissue (BAT), a tissue also recently discovered in adult humans. Studies in humans, however, are hampered by the accessibility of most tissues. In contrast, peripheral blood mononuclear cells (PBMC) are accessible and share the expression profile of different sets of genes with other tissues, including those that reflect metabolic responses. Ferrets are an animal model physiologically closer to humans than rodents. Here, we investigated the effects on ferrets of one-week acclimation to 4 °C by analysing the PBMC transcriptome. Cold exposure deeply affected PBMC gene expression, producing a widespread down-regulation of genes involved in different biological pathways (cell cycle, gene expression regulation/protein synthesis, immune response, signal transduction, and genes related to extracellular matrix/cytoskeleton), while thermogenic and glycogenolysis-related processes were increased. Results obtained in PBMC reflected those of adipose tissue, but hardly those of the liver. Our study, using ferret as a model, reinforce PBMC usefulness as sentinel biological material for cold-exposure studies in order to deepen our understanding of the general and specific pathways affected by cold acclimation. This is relevant for future development of therapies to be used clinically.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1773 ◽  
Author(s):  
Michela Alfarano ◽  
Donato Pastore ◽  
Vincenzo Fogliano ◽  
Casper Schalkwijk ◽  
Teresa Oliviero

Studies demonstrate that the potential health-beneficial effect of sulforaphane (SR), a compound formed in broccoli, is the result of a number of mechanisms including upregulation of phase two detoxification enzymes. Recent studies suggest that SR increases expression/activity of glyoxalase 1 (Glo1), an enzyme involved in the degradation of methylglyoxal, is major precursor of advanced glycation end products. Those compounds are associated with diabetes complications and other age-related diseases. In this study, the effect of SR on the expression/activity of Glo1 in peripheral blood mononuclear cells (PBMCs) from 8 healthy volunteers was investigated. PBMCs were isolated and incubated with SR (2.5 μM-concentration achievable by consuming a broccoli portion) for 24 h and 48 h. Glo1 activity/expression, reduced glutathione (GSH), and glutathione-S-transferase gene expression were measured. Glo1 activity was not affected while after 48 h a slight but significant increase of its gene expression (1.03-fold) was observed. GSTP1 expression slightly increased after 24 h incubation (1.08-fold) while the expressions of isoform GSTT2 and GSTM2 were below the limit of detection. GSH sharply decreased, suggesting the formation of GSH-SR adducts that may have an impact SR availability. Those results suggest that a regular exposure to SR by broccoli consumption or SR supplements may enhance Glo1.


Sign in / Sign up

Export Citation Format

Share Document