scholarly journals Acid Sphingomyelinase Inhibition Prevents Hemolysis During Erythrocyte Storage

2016 ◽  
Vol 39 (1) ◽  
pp. 331-340 ◽  
Author(s):  
Richard S. Hoehn ◽  
Peter L. Jernigan ◽  
Alex L. Chang ◽  
Michael J. Edwards ◽  
Charles C. Caldwell ◽  
...  

Background/Aims: During storage, units of human red blood cells (pRBCs) experience membrane destabilization and hemolysis which may cause harm to transfusion recipients. This study investigates whether inhibition of acid sphingomyelinase could stabilize erythrocyte membranes and prevent hemolysis during storage. Methods: Human and murine pRBCs were stored under standard blood banking conditions with and without the addition of amitriptyline, a known acid sphingomyelinase inhibitor. Hemoglobin was measured with an electronic hematology analyzer and flow cytometry was used to measure erythrocyte size, complexity, phosphatidylserine externalization, and band 3 protein expression. Results: Cell-free hemoglobin, a marker of hemolysis, increased during pRBC storage. Amitriptyline treatment decreased hemolysis in a dose-dependent manner. Standard pRBC storage led to loss of erythrocyte size and membrane complexity, increased phosphatidylserine externalization, and decreased band 3 protein integrity as determined by flow cytometry. Each of these changes was reduced by treatment with amitriptyline. Transfusion of amitriptyline-treated pRBCs resulted in decreased circulating free hemoglobin. Conclusion: Erythrocyte storage is associated with changes in cell size, complexity, membrane molecular composition, and increased hemolysis. Acid sphingomyelinase inhibition reduced these changes in a dose-dependent manner. Our data suggest a novel mechanism to attenuate the harmful effects after transfusion of aged blood products.

Blood ◽  
1995 ◽  
Vol 85 (7) ◽  
pp. 1920-1928 ◽  
Author(s):  
U Giger ◽  
B Sticher ◽  
R Naef ◽  
R Burger ◽  
HU Lutz

A variety of naturally occurring autoantibodies (NOAs) have been found in sera of animals and humans. Although their specific homeostatic role in the clearance of altered or senescent cells has been proposed and in vitro studies support such functions, in vivo evidence has been lacking. We studied the effect of affinity-purified human anti-band 3 NOA on the survival of untreated and diamide-treated erythrocytes in normal and complement C3-deficient guinea pigs. In vitro exposure to diamide, an oxidative agent, severely reduced the erythrocyte deformability and increased the amount of high-molecular-weight forms of band 3 protein and band 3-hemoglobin adducts in erythrocyte membranes, thereby markedly shortening the survival of these cells in vivo. Human anti-band 3 NOA bound in a dose-dependent manner to erythrocytes, and binding increased with exposure to diamide. In normal guinea pigs anti-band 3 NOA significantly accelerated the clearance of erythrocytes that were mildly damaged by iodine surface labeling and of those that were further oxidized by diamide. However, the anti-band 3 effect was transient and small. In contrast, anti-band 3 NOA did not significantly alter erythrocyte survival in functionally C3-deficient guinea pigs, thereby supporting the C3b requirement for anti-band 3 NOA activity. On the other hand, a pretreatment of animals with purified human band 3 protein slowed down the clearance of erythrocytes incubated with IgG depleted of anti-band 3 NOA. These results provide the first in vivo evidence of a role for anti-band 3 NOA in the clearance of erythrocytes.


2021 ◽  
Author(s):  
Tobias Schmidt ◽  
Robin Kahn ◽  
Fredrik Kahn

Objective To investigate the effects of high dose ascorbic acid (AA) on monocyte polarization and cytokine production in vitro Design Experimental in vitro study of cells from healthy subjects and patients with sepsis Setting University research laboratory and academic hospital Subjects Six healthy controls and three patients with sepsis Interventions Monocytes were isolated from whole blood of healthy donors (n=6) and polarized in vitro for 48hrs using LPS or LTA. Polarization was confirmed by surface marker expression using flow cytometry. As a comparison, monocytes were also isolated from septic patients (n=3) and analyzed for polarization markers. The effect of AA on monocyte polarization was evaluated. As a functional assay, AA-treated monocytes were analyzed for cytokine production of TNF and IL-8 by intracellular staining and flow cytometry following activation with LPS or LTA. Measurements and Main Results Both LPS and LTA induced polarization in healthy monocytes in vitro, with increased expression of both pro- (CD40 and PDL1, p<0.05) and anti-inflammatory (CD16 and CD163, p<0.05) polarization markers, with non-significant effects on CD86 and CD206. This pattern resembled, at least partly, that of monocytes from septic patients. Treatment with AA significantly inhibited the upregulation of surface expression of CD16 and CD163 (p<0.05) in a dose dependent manner, but not CD40 or PDL-1. Finally, AA attenuated LPS or LTA-induced cytokine production of IL-8 and TNF in a dose-dependent manner (both p<0.05). Conclusions AA inhibits upregulation of anti-, but not pro-inflammatory related markers in LPS or LTA polarized monocytes. Additionally, AA attenuates cytokine production from in vitro polarized monocytes, displaying functional involvement. This study provides important insight into the immunological effects of high dose AA on monocytes, and potential implications in sepsis.


1982 ◽  
Vol 207 (3) ◽  
pp. 595-598 ◽  
Author(s):  
K A Cordes ◽  
J M Salhany

Recent studies of haemoglobin binding to the cytoplasmic side of the erythrocyte membrane have shown that the predominant high-affinity interaction occurs with the major integral membrane protein known as band-3 protein and that this interaction may occur within the intact erythrocyte in a manner regulated by cell pH. We report here that haemoglobin and glyceraldehyde 3-phosphate dehydrogenase binding to band-3 protein in isolated membranes can inhibit endocytosis during vesiculation in vitro. The specificity of this effect was demonstrated by showing that myoglobin, which has an affinity for the membrane fully one to two orders of magnitude lower than that for haemoglobin, does not inhibit endocytosis.


2020 ◽  
Vol 10 (8) ◽  
pp. 1218-1223
Author(s):  
Xinping Chen ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Weihua Xu ◽  
Junjie Hu ◽  
...  

The aim of this study was to investigate the effect of different concentrations of novel targeted nanodrugs based on miRNA on the antitumor activity and mechanism in cervical carcinoma A549 cells. The MTT method was used to determine the effect of different concentrations of novel targeted nanodrugs based on miRNA on A549 cell proliferation, and annexin V FITC/PI double staining flow cytometry was performed to analyze the effect of these nanodrugs on A549 cell apoptosis. Western blotting was performed to observe the effect of these nanodrugs on the expression of Bax, Bcl-2, and caspase-3-related genes involved in A549 cell apoptosis. Compared with the control group, the novel targeted nanodrugs based on miRNA significantly inhibited the proliferation of A549 cells in a time- and dose-dependent manner. Results of double staining flow cytometry demonstrated that these nanodrugs could increase the apoptotic rate of A549 cells in a dose-dependent manner 48 h later. Western blotting revealed that these nanodrugs could upregulate the expression of Bax and caspase3 genes and downregulate the expression of Bcl-2 gene. Nanodrugs display an obvious antitumor activity in vitro, and the underlying mechanism may be associated with the upregulation of Bax and caspase-3 gene expression and the downregulation of Bcl-2 gene expression.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2380-2380
Author(s):  
Josefina Udi ◽  
Dagmar Wider ◽  
Julie Catusse ◽  
Dominik Schnerch ◽  
Marie Follo ◽  
...  

Abstract Abstract 2380 Introduction: Sorafenib is an oral multikinase inhibitor that targets several cancer-specific pathways and directly affects tumor cell proliferation, cell survival and neovascularization. The Ras/Raf/MEK/ERK pathway is particularly known to be critical for proliferation of multiple myeloma (MM) cells. Moreover, its blockage may not only compromise MM cell survival and proliferation, but also influence cell adhesion and migration. We sought to elucidate the effects of sorafenib on proliferation, phenotype, specific signalling pathways, actin polymerization and chemotaxis, as well as cytotoxic interactions when combined with other anti-MM agents, such as bortezomib. Methods: L363, U266 and RPMI8226 were cultured with RPMI1640, 10% FCS and 0.2% penicillin/streptomycin. On day 0, cells were treated with increasing concentrations of sorafenib and/or bortezomib. Cell viability and cytotoxicity were assessed on days 3 and 6, in addition to day 1 or 2 in previous analyses. The cytotoxic effect for sorafenib and bortezomib combined was evaluated using Calcusyn Software, whereby a combination index =1, <1 or >1 indicated additive, synergistic and antagonistic effects, respectively. CD138 expression and morphologic changes were evaluated via flow cytometry, immunocytochemistry and confocal microscopy. The effect of sorafenib on ERK1/2 phosphorylation was investigated by western blot. Actin polymerization was studied by flow cytometry after labeling with FITC-phalloidin. Chemokine receptor expression was assessed by flow cytometry and chemotaxis of L363 cells with various chemoattractants was studied using 96-well chemotaxis chambers. Results: Our MM-in vitro model confirmed potent cytotoxicity for sorafenib single use and synergistic effects when combined with bortezomib. With 10 and 100μM sorafenib in L363, we observed increased median PI+ cells (62% and 94% on d3, respectively) compared to the control (median PI+ d0: 11%), with similar increases on d6 (median 81% and 92%, respectively). Combined sorafenib and bortezomib use showed additive effects and synergism at 10μM and 10nM bortezomib (combination index: 0.80). Similar to PI-results, viable cells and CD138 expression by flow cytometry substantially decreased with sorafenib in a dose- and time-dependent manner. Regarding the effects on the MAPK pathway, after incubating L363 cells with 1 and 10μM sorafenib for 6 and 24 hours, a dose-dependent downregulation of ERK1/2 phosphorylation was observed. After 3 days of incubation with increasing concentrations of sorafenib, MM cells were stained with DAPI, Phalloidin-Alexa594 and CD138-FITC and analyzed via confocal microscopy. L363 cells highly expressed CD138 in the absence of sorafenib. Of note, sorafenib not only affected cell proliferation, but also phenotype, morphology, actin metabolism and chemotaxis of MM cells. With sorafenib concentrations as low as 1μM, CD138 was downregulated and impressive morphologic changes with a reduction in F-actin content were observed. We could show CXCL12-stimulated actin polymerization and after treatment with sorafenib with concentrations of 10μM and 100μM its inhibition, as confirmed via flow cytometry after labeling with phalloidin-FITC. L363 cells showed high expression of the chemokine receptors CCR4 and CCR5 and underwent chemotaxis to their common ligand CCL5. Chemotaxis of L363 cells was even more evident with the use of supernatant from M210B4 bone marrow stromal cells. This M210B4-induced chemotaxis also occurred in the presence of the specific CXCR4-inhibitor AMD3100, supporting the involvement of chemokines other than CXCL12 in M210B4-induced MM cell migration. M210B4-triggered chemotaxis was substantially inhibited after 3 days of incubation with increasing concentrations of sorafenib in a dose-dependent manner. Conclusions: To the best of our knowledge this is the first analysis of the effects of sorafenib on phenotype, morphology, actin polymerization and migration of MM cells. Sorafenib induced down-regulation of phospho-ERK appeared responsible for the observed actin depolymerization and reduction in M210B4-triggered chemotaxis. Hence, further analysis of sorafenib and other novel anti-MM agents, both in MM cells and their microenvironment, should enable greater progress in this hematopoietic disease. Disclosures: No relevant conflicts of interest to declare.


1981 ◽  
Vol 649 (2) ◽  
pp. 310-316 ◽  
Author(s):  
T.M.A.R. Dubbelman ◽  
A.F.P.M. De Goeij ◽  
K. Christianse ◽  
J. Van Steveninck

2000 ◽  
Vol 23 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Ken ANDO ◽  
Ken-ichi SAKO ◽  
Makoto TAKAHASHI ◽  
Masatoshi BEPPU ◽  
Kiyomi KIKUGAWA

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1497-1497
Author(s):  
Jing-fei Dong ◽  
Ye Tian ◽  
Breia Salsbery ◽  
Hengjie Yuan ◽  
Min Wang ◽  
...  

Abstract Uncontrolled hemorrhage is a leading cause of the preventable deaths that occur in patients with trauma. The cause of trauma-associated coagulopathy is multifactorial, including blood loss, consumption of coagulation factors and platelets, the dilution of coagulation factors and platelets due to fluid resuscitation, and hypothermia. Traumatic brain injury (TBI) lacks two key causal factors for coagulopathy: heavy blood loss and a large volume of fluid resuscitation, but is associated with a significantly higher incidence of coagulopathy. The pathogenesis of this TBI-associated coagulopathy remains poorly understood. We tested the hypothesis that brain-derived microparticles (BDMPs) released from an injured brain play a causal role in developing systemic coagulopathy after TBI. Here, we report that mice subjected to fluid percussion injury (1.9±0.1 atm) developed a BDMP-dependent hypercoagulable state, with a peak level of plasma glial cell and neuronal microparticles, reaching 17,496 ± 4,833/µl and 18,388 ± 3,657/µl 3 hrs after TBI. BDMPs were measured by flow cytometry using triple gating based on particle size and the expression of neural cell markers and phosphatidylserine (PS). To exclude contributions to the coagulopathy of non-neural cell microparticles released during trauma stress, BDMPs were made from normal brain by freeze-thawing and mechanical injury. BDMPs thus made had below detection levels of microparticles from leukocytes (CD45), endothelial cells (CD144), erythrocytes (CD235a), and platelets (CD42b). Uninjured mice injected with BDMPs made in vitro developed a hyper-turn-hypo-coagulable state in a dose-dependent manner as measured by the rates of clot formation and fibrinogen depletion, resulting in microvascular fibrin deposition in the lungs, kidney and heart. BDMPs measured 50 – 500 nm with relatively intact membranes under transmission electron microscopy and expressed neuronal or glial cell markers and procoagulant PS and tissue factor (TF). BDMPs promoted clot formation in a PS-dependent assay at a maximal activity of ~1 x 105 BDMPs/µl, equivalent to 1.6 µg/µl of purified brain PS. They were equally active in promoting thrombin generation in a PS-and TF-dependent manner, BDMPs at 2.5 x 104 /µl yielding an activity equivalent to 1 pM of soluble TF. The procoagulant activity of BDMPs was significantly stronger than microparticles generated from collagen-stimulated platelets and was blocked by the PS-binding lactadherin in a dose-dependent manner. Consistent with observations made in the mouse models, fetal hippocampal cells in culture produced microparticles upon injury. These microparticles transmigrated through the disrupted endothelial barrier in the presence of live, but not lyophilized platelets. BDMP-bound platelets were detected by flow cytometry and scan electron microscopy. They activated platelets as measured by increases in calcium influx and CD62p expression, but did not induce platelet aggregation directly or in the presence of low doses of collagen. In summary, we have studied acute changes in coagulation associated with TBI using a mouse FPI model combined with in vitro experiments. Focusing on the first 6 hrs post-TBI minimizes confounding changes induced by secondary events, such as ischemic injury. The results define a causal role for BDMPs in the TBI-associated systemic coagulation. We also show that BDMPs activated platelets. Activated platelets may facilitate the transmigration of BDMPs through the disrupted endothelial barrier by releasing pro-inflammatory mediators to promote local inflammation at a site of vascular injury. This notion is supported by the finding that live, but not lyophilized platelets and, to lesser degree, plasma from activated platelets promoted BDMP transmigration through a monolayer of endothelial cells. Finally, the PS binding lactadherin blocked the BDMP-dependent procoagulant activity, raising two interesting perspectives. First, PS scavengers and neutralizing molecules may reduce or prevent coagulopathy associated with TBI. Second, an intrinsic or acquired deficiency in the PS-dependent clearance of microparticles may predispose an individual to consumptive coagulopathy associated with TBI and other conditions. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document