Study on the antitumor activity and mechanism of novel targeted nanodrugs based on miRNA in cervical cancer

2020 ◽  
Vol 10 (8) ◽  
pp. 1218-1223
Author(s):  
Xinping Chen ◽  
Zhichao Ma ◽  
Juan Zhu ◽  
Weihua Xu ◽  
Junjie Hu ◽  
...  

The aim of this study was to investigate the effect of different concentrations of novel targeted nanodrugs based on miRNA on the antitumor activity and mechanism in cervical carcinoma A549 cells. The MTT method was used to determine the effect of different concentrations of novel targeted nanodrugs based on miRNA on A549 cell proliferation, and annexin V FITC/PI double staining flow cytometry was performed to analyze the effect of these nanodrugs on A549 cell apoptosis. Western blotting was performed to observe the effect of these nanodrugs on the expression of Bax, Bcl-2, and caspase-3-related genes involved in A549 cell apoptosis. Compared with the control group, the novel targeted nanodrugs based on miRNA significantly inhibited the proliferation of A549 cells in a time- and dose-dependent manner. Results of double staining flow cytometry demonstrated that these nanodrugs could increase the apoptotic rate of A549 cells in a dose-dependent manner 48 h later. Western blotting revealed that these nanodrugs could upregulate the expression of Bax and caspase3 genes and downregulate the expression of Bcl-2 gene. Nanodrugs display an obvious antitumor activity in vitro, and the underlying mechanism may be associated with the upregulation of Bax and caspase-3 gene expression and the downregulation of Bcl-2 gene expression.

2018 ◽  
Vol 19 (10) ◽  
pp. 3179 ◽  
Author(s):  
Hongling Gu ◽  
Na Li ◽  
Jiangkun Dai ◽  
Yaxi Xi ◽  
Shijun Wang ◽  
...  

A series of novel bivalent β-carboline derivatives were designed and synthesized, and in vitro cytotoxicity, cell apoptosis, and DNA-binding affinity were evaluated. The cytotoxic results demonstrated that most bivalent β-carboline derivatives exhibited stronger cytotoxicity than the corresponding monomer against the five selected tumor cell lines (A549, SGC-7901, Hela, SMMC-7721, and MCF-7), indicating that the dimerization at the C3 position could enhance the antitumor activity of β-carbolines. Among the derivatives tested, 4B, 6i, 4D, and 6u displayed considerable cytotoxicity against A549 cell line. Furthermore, 4B, 6i, 4D, and 6u induced cell apoptosis in a dose-dependent manner, and caused cell cycle arrest at the S and G2/M phases. Moreover, the levels of cytochrome C in mitochondria, and the expressions of bcl-2 protein, decreased after treatment with β-carbolines, which indicated that 6i and 6u could induce mitochondria-mediated apoptosis. In addition, the results of UV-visible spectral, thermal denaturation, and molecular docking studies revealed that 4B, 6i, 4D, and 6u could bind to DNA mainly by intercalation.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ming-Ju Hsieh ◽  
Shun-Fa Yang ◽  
Yih-Shou Hsieh ◽  
Tzy-Yen Chen ◽  
Hui-Ling Chiou

Extensive research results support the application of herbal medicine or natural food as an augment during therapy for various cancers. However, the effect of dioscin on tumor cells autophagy has not been clearly clarified. In this study, the unique effects of dioscin on autophagy of hepatoma cells were investigated. Results found that dioscin induced caspase-3- and -9-dependent cell apoptosis in a dose-dependent manner. Moreover, inhibition of ERK1/2 phosphorylation significantly abolished the dioscin-induced apoptosis. In addition, dioscin triggered cell autophagy in early stages. With autophagy inhibitors to hinder the autophagy process, dioscin-induced cell apoptosis was significantly enhanced. An inhibition of caspase activation did not affect the dioscin-induced LC3-II protein expression. Based on the results, we believed that while apoptosis was blocked, dioscin-induced autophagy process also diminished in Huh7 cells. In conclusion, this study indicates that dioscin causes autophagy in Huh7 cells and suggests that dioscin has a cytoprotective effect.


2017 ◽  
Vol 42 (3) ◽  
pp. 1177-1191 ◽  
Author(s):  
Yu Zhang ◽  
Chenyang Zhu ◽  
Bangyao Sun ◽  
Jiawei Lv ◽  
Zhonghua Liu ◽  
...  

Background/Aims: p53 dysfunction is frequently observed in lung cancer. Although restoring the tumour suppressor function of p53 is recently approved as a putative strategy for combating cancers, the lack of understanding of the molecular mechanism underlying p53-mediated lung cancer suppression has limited the application of p53-based therapies in lung cancer. Methods and Results: Using RNA sequencing, we determined the transcriptional profile of human non-small cell lung carcinoma A549 cells after treatment with two p53-activating chemical compounds, nutlin and RITA, which could induce A549 cell cycle arrest and apoptosis, respectively. Bioinformatics analysis of genome-wide gene expression data showed that distinct transcription profiles were induced by nutlin and RITA and 66 pathways were differentially regulated by these two compounds. However, only two of these pathways, 'Adherens junction' and 'Axon guidance', were found to be synthetic lethal with p53 re-activation, as determined via integrated analysis of genome-wide gene expression profile and short hairpin RNA (shRNA) screening. Further functional protein association analysis of significantly regulated genes associated with these two synthetic lethal pathways indicated that GSK3 played a key role in p53-mediated A549 cell apoptosis, and then gene function study was performed, which revealed that GSK3 inhibition promoted p53-mediated A549 cell apoptosis in a p53 post-translational activity-dependent manner. Conclusion: Our findings provide us with new insights regarding the mechanism by which p53 mediates A549 apoptosis and may cast light on the development of more efficient p53-based strategies for treating lung cancer.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4234-4234
Author(s):  
Xiaoying Zhao ◽  
Lei Xu ◽  
Dong Wu ◽  
Rongzhen Xu

Abstract Purpose: To investigate apoptosis-inducing effects of Berbamine on human leukemia cells and to explore the underlying mechanism. Materials and methods: Berbamine was dissolved in 0.9% sodium chloride to an initial concentration of 1mg/ml and subsequently diluted to desired concentrations with cell culture medium. MTT was used to examine the effect of Berbamine on cell proliferation of K562 cells. Characteristic cellular morphological changes were used as indicators of apoptosis in K562 cells while the rate of apoptosis was measured by flow cytometry assay. Expression levels of apoptosis related genes bcl-2 and bax were determined by RT-PCR and the levels of bcr/abl were evaluated by nested-PCR. Levels of Caspase 3 were measured by flow cytometry assay. Results: Berbamine inhibited the cell proliferation significantly and in a dose-dependent manner in tested K562 cells. Its IC50 value was 5.23ug/ml. As determined by morphological observations and flow cytometry assay, Berbamine was able to induce apoptosis of K562 cells within 6 hours. The apoptosis rate of K562 was also dose-dependent. Steady-state transcript levels of bcr/abl decreased dramatically (half-quantity ratio from 1.284 to 0.506 within 72 hours following 8mg/ml Berbamine treatment. On the other hand, the protein levels of Caspase 3 surged from 18.36% to 38.25% (p<0.001) within 24 hours after treatment of 12mg/ml Berbamine. During the same period, no changes of bcl-2 or bax transcript levels were detected in the cells that were treated with 8mg/ml Berbamine. Conclusions: Our results suggest that Berbamine is a potent inhibitor of cell proliferation and a strong inducer of apoptosis in human K562 cells. The Berbamine-induced apoptosis pathway involves down regulation of bcr/abl and up regulation of Caspase 3 expressions. Neither bcl-2 nor bax plays substantial roles in Berbamine-induced K562 cell apoptosis.


2010 ◽  
Vol 88 (4) ◽  
pp. 705-714 ◽  
Author(s):  
Ling-Fei Wu ◽  
Guo-Ping Li ◽  
Jian-Dong Su ◽  
Ze-Jin Pu ◽  
Jia-Lin Feng ◽  
...  

Adenosine can exhibit cytotoxic activity in vivo and in vitro, though its mechanisms are still uncertain. In this study, we investigated the adenosine-mediated apoptotic signaling pathway and the role of NF-κB in human hepatocellular carcinoma HepG2 cells. HepG2 cells were treated with different concentrations of adenosine for 12–48 h, and the effect of adenosine on cell proliferation was evaluated by MTT assay. The cytotoxicity of adenosine alone or in combination with an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), was also evaluated by MTT assay and the mode of cell death was detected by Hoechst 33342 staining. Cell cycle progress was performed by flow cytometry with PI staining. The protein expressions of Bcl-2, p53, NF-κB subunit p65, and caspase-3 were assayed by Western blot. Caspase-3 activity was measured by spectrophotomteric assay. The results showed that adenosine significantly reduced the viability of HepG2 cells in a dose- and time-dependent manner, with IC 50 (24 and 48 h) of 2.52 and 1.89 mmol·L–1, respectively. The apoptotic index (percentage of sub-G1 phase) of HepG2 cells in adenosine treatment alone for 12 and 24 h or in combination with PDTC were 8.30%, 22.32% and 20.18%, 30.89%, respectively. All of them were higher than that in the control group (0.81%, p < 0.01). The characteristic changes of cell apoptosis (chromatin condensation and sub-G1 peak) were observed under fluorescent microscopy and flow cytometry. We also found that the apoptotic process triggered by adenosine was involved in G0–G1 cell-cycle arrest, enhanced the activity of caspase-3, upregulated p53 and NF-κB p65 expression, and downregulated Bcl-2 expression. Inhibition of NF-κB by PDTC decreased NF-κB p65 expression, enhanced cell apoptosis ratio, and increased caspase-3 activity. NF-κB may play an anti-apoptosis role in adenosine-induced HepG2 cytotoxicity.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Zhiwen Zhang ◽  
Feng Wen ◽  
Chengjian He ◽  
Jun Yu

Background: Nucleus pulposus (NP) cell apoptosis is a typical feature within the degenerative disc. High magnitude compression significantly promotes NP cell apoptosis. Several studies have indicated that resveratrol has protective effects on disc cell’s normal biology. Objective: The present study aims to investigate whether resveratrol can attenuate mechanical overloading-induced NP cell apoptosis in a disc organ culture. Methods: Isolated porcine discs were cultured in culture chambers of a mechanically active perfusion bioreactor and subjected to a relatively high magnitude compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days. Different concentrations (50 and 100 μM) of resveratrol were added into the culture medium to observe the protective effects of resveratrol against NP cell apoptosis under mechanical compression. The noncompressed discs were used as controls. Results: Similar with the previous studies, this high magnitude compression significantly promoted NP cell apoptosis, reflected by the increased number of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining-positive NP cells and enzyme (caspase-9 and caspase-3) activity, the up-regulated expression of proapoptotic molecules (Bax and caspase-3/cleaved caspase-3), and down-regulated expression of antiapoptotic molecule (Bcl-2). However, resveratrol partly attenuated NP cell apoptosis under this high magnitude compression in a dose-dependent manner. Additionally, though the ERK1/2 pathway was significantly activated in the mechanical compression group, resveratrol partly attenuated activation of the ERK1/2 pathway under mechanical compression in a dose-dependent manner. Conclusion: Resveratrol attenuates mechanical overloading-induced NP cell apoptosis in a dose-dependent manner, and inhibiting activation of the ERK1/2 pathway may be one potential mechanism behind this regulatory process.


2021 ◽  
Vol 16 (1) ◽  
pp. 961-968
Author(s):  
Guang-Yan Zhang ◽  
Wei-Yong Chen ◽  
Xiao-Bo Li ◽  
Hua Ke ◽  
Xue-Lin Zhou

Abstract Scutellarin plays an anti-tumor role in A549 lung cancer cells, but the underlying mechanism is unclear. In this study, scutellarin was used to treat A549 cells for 12, 24, and 48 h, followed by the addition of Tempo, a selective scavenger of mitochondrial reactive oxygen species (ROS) and SB431542, a transforming growth factor (TGF)-β1 receptor inhibitor. A dihydroethidium fluorescence probe was used to measure the intracellular ROS level, Cell Counting Kit-8 (CCK-8) was used to detect cell viability, and flow cytometry was performed to examine apoptosis. Western blots were used to detect the total protein level of TGF-β1, p-smad2, and cleaved caspase-3 in A549 cells. The results showed that scutellarin significantly inhibited cell viability and increased apoptosis. Scutellarin also promoted intracellular ROS production, TGF-β1/smad2 signaling pathway activation, and cleaved caspase-3 expression, which was partly reversed by Tempo. Moreover, scutellarin-induced intracellular ROS production and cleaved caspase-3 expression were inhibited by blocking the TGF-β1/smad2 pathway with SB431542. In conclusion, scutellarin promoted apoptosis and intracellular ROS accumulation, which could be abrogated by Tempo and SB431542 treatment in A549 cells. Our study indicated that scutellarin induced A549 cell apoptosis via the TGF-β1/smad2/ROS/caspase-3 pathway.


2020 ◽  
Vol 20 (5) ◽  
pp. 559-570
Author(s):  
Jun Li ◽  
Jie Li ◽  
Jiaojiao Zhang ◽  
Jiantao Shi ◽  
Shi Ding ◽  
...  

Background: The Hepatocyte Growth Factor Receptor (HGFR) c-Met is over-expressed and/or mutated in various human tumor types. Dysregulation of c-Met/HGF signaling pathway affects cell proliferation, survival and motility, leading to tumor growth, angiogenesis, and metastasis. Therefore, c-Met has become an attractive target for cancer therapy. Objective: This study is aimed to evaluate a new series of 4-phenoxypyridine derivatives containing semicarbazones moiety for its cytotoxicity. Methods: A series of novel 4-phenoxypyridines containing semicarbazone moieties were synthesized and evaluated for their in vitro cytotoxic activities against MKN45 and A549 cancer cell lines and some selected compounds were further examined for their inhibitory activity against c-Met kinase. In order to evaluate the mechanism of cytotoxic activity of compound 24, cell cycle analysis, Annexin V/PI staining assay, AO/EB assay, wound-healing assay and docking analysis with c-Met were performed. Results: The results indicated that most of the compounds showed moderate to good antitumor activity. The compound 28 showed well cytotoxic activity against MKN45 and A549 cell lines with IC50 values of 0.25μM and 0.67μM, respectively. Compound 24 showed good activity on c-Met and its IC50 value was 0.093μM. Conclusion: Their preliminary Structure-Activity Relationships (SARs) studies indicated that electronwithdrawing groups on the terminal phenyl rings are beneficial for improving the antitumor activity. Treatments of MKN45 cells with compound 24 resulted in cell cycle arrest in G2/M phase and induced apoptosis in a dose-dependent manner. In addition, AO/EB assays indicated 24 induced dose-dependent apoptosis of A549 and MKN45 cells. Wound-healing assay results indicated that compound 24 strongly inhibited A549 cell motility.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiangjun Yin ◽  
Dongfang Kan ◽  
Jiazhao Ruan ◽  
Delong Wang ◽  
Yi Chai ◽  
...  

Lung cancer remains the leading cause of cancer-related deaths worldwide. Traditional Chinese medicine (TCM) is a valuable resource of active natural products and plays an important role in cancer treatment with the advantages of high efficiency and safety. Wenxia Changfu formula (WCF) is modified from Dahuang Fuzi decoction from Han Dynasty and has been used for treating lung cancer in China. Our previous research showed that WCF had an antitumor effect in vivo and in vitro, while the mechanism has not been well illustrated. In this study, the effect of WCF on the proliferative ability in three lung cancer cells and one noncancerous human cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. WCF suppressed A549, H460, and PC-9 cell viability in a dose-dependent manner, with no inhibition of noncancerous MRC-5 cells after 48 h treatment with WCF (0–50 mg/mL). Furthermore, we screened for genes in A549 cells using four WCF-treated samples and four control samples on a gene expression profile microarray. 21 genes were significantly downregulated by WCF, which may potentially play an important role in the proliferation of A549 cells. High-content screening evaluated whether silencing the 21 genes affected A549 cell growth. The results showed that PIF1 knockdown exhibited the most potent inhibition of cell proliferation compared with the other genes. Downregulation of PIF1 increased A549 cell apoptosis and the activity of caspase 3/7. Besides, RT-PCR showed that the expression levels of PIF1 mRNA decreased significantly in A549, H460, and PC-9 cells after WCF treatment. In conclusion, the present observations indicate that WCF may inhibit lung cancer cell proliferation by promoting apoptosis via regulating the expression of PIF1.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M C Carbajo-García ◽  
A Corachán ◽  
M Segura ◽  
J Monleón ◽  
J Escrig ◽  
...  

Abstract Study question Is DNA methylation reversion through DNA methyltransferases (DNMT) inhibitors, such as 5-aza–2’-deoxycitidine, a potential therapeutic option for treatment of patients with uterine leiomyomas (UL)? Summary answer 5-aza–2’-deoxycitidine reduces proliferation and extracellular matrix (ECM) formation by inhibition of Wnt/ β-catenin pathway on UL cells, suggesting DNMT inhibitors as an option to treat UL. What is known already: UL is a multifactorial disease with an unclear pathogenesis and inaccurate treatment. Aberrant DNA methylation have been found in UL compared to myometrium (MM) tissue, showing hypermethylation of tumor suppressor genes, which contributes to the development of this tumor. The use of DNMT inhibitors, such as 5-aza–2’-deoxycytidine (5-aza-CdR), has been suggested to treat tumors in which altered methylation pattern is related to tumor progression, as occurs in UL. Based on this, we aimed to evaluate whether DNA methylation reversion through 5-aza-CdR reduces cell proliferation and ECM formation in UL cells, being a potential option for UL medical treatment. Study design, size, duration Prospective study comparing UL versus MM tissue and human uterine leiomyoma primary (HULP) cells treated with/without 5-aza-CdR at 0 µM (control), 2 µM, 5 µM and 10 µM for 72 hours. UL and MM tissue were collected from women without any hormonal treatment for the last 3 months (n = 16) undergoing myomectomy or hysterectomy due to symptomatic leiomyoma pathology. Participants were recruited between January 2019 and February 2020 at Hospital Universitario y Politecnico La Fe (Spain). Participants/materials, setting, methods Samples were collected from Caucasian premenopausal women aged 31–48 years, with a body mass index of &lt; 30 and without hormonal treatment. DNMT1 gene expression was analysed in UL vs MM tissue by qRT-PCR and activity of DNMT was measured in UL and MM tissue and cells by ELISA. 5-aza-CdR effect on proliferation was assessed by CellTiter test and Western blot (WB), apoptosis and ECM analyzed by WB and Wnt/ β-catenin pathway by qRT-PCR and WB. Main results and the role of chance: DNMT1 gene expression was increased in UL compared to MM tissue (fold change [FC]=2.49, p-value [p]=0.0295). Similarly, DNMT activity was increased in both UL compared to MM tissue and HULP cells versus MM cells (6.50 vs 3.76 OD/h/mg, p = 0.026; 211.30 vs 63.67 OD/h/mg, p = 0.284, respectively). After 5-aza-CdR treatment, cell viability of HULP cells was reduced in a dose dependent manner, being statistically significant at 10 µM (85.25%, p = 0.0001). Accordantly, PCNA protein expression was significantly decreased at 10 µM in HULP cells (FC = 0.695, p = 0.034), demonstrating cell proliferation inhibition. Additionally, 5-aza-CdR inhibited ECM protein expression in HULP cells in a dose-dependent manner being statistically significant at 10 µM for COLLAGEN I (FC = 0.654, p = 0.023) and PAI–1 (FC = 0.654, p = 0.023), and at 2 µM and 10 µM for FIBRONECTIN (FC = 0.812, p = 0.020; FC = 0.733, p = 0.035; respectively). Final targets of Wnt/ β-catenin pathway were decreased after 5-aza-CdR treatment, protein expression of WISP1 was significantly inhibited at 10 µM (FC = 0.699, p = 0.026), while expression levels of Wnt/ β-catenin target genes C-MYC (FC = 0.745, p = 0.028 at 2 µM; FC = 0.728, p = 0.019 at 10 µM) and MMP7 (FC = 0.520, p = 0.003 at 5 µM, FC = 0.577, p = 0.007 at 10 µM) were also significantly downregulated in HULP-treated cells vs untreated cells. Limitations, reasons for caution: This study has strict inclusion criteria to diminish epigenetic variability, thereby we should be cautious extrapolating our results to general population. Besides, this is a proof of concept with the inherent cell culture limitations. Further studies are necessary to determine 5-aza-CdR dose and adverse effects on UL in vivo. Wider implications of the findings: 5-aza-CdR treatment reduces cell proliferation and ECM formation through Wnt/ β-catenin pathway inhibition, suggesting that inhibition of DNA methylation could be a promising new therapeutic approach to treat UL. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document