scholarly journals Nucleotide Transition 390C-T in the Wilms' Tumor 1 Gene: A Risk Factor of Hypospadias?

2016 ◽  
Vol 10 (3) ◽  
pp. 136-139 ◽  
Author(s):  
Gergely Buglyó ◽  
Ágnes Magyar ◽  
Sándor Biró ◽  
István Csízy ◽  
Dániel Beyer ◽  
...  

Introduction: The gene Wilms' tumor 1 (WT1) encodes a unique transcription factor. Its defects are known to cause a wide range of complex genitourinary malformations and may contribute to non-syndromic forms of hypospadias. Materials and Methods: We performed WT1 mutation analysis and copy number analysis of WT1-interacting protein in 13 Hungarian patients diagnosed with isolated hypospadias. Results: Sequencing of WT1 revealed a high frequency of heterozygosity for transition 390C-T (5 heterozygotes out of 13 patients, including 2 brothers). WT1-interacting protein had a normal copy number in all patients. Conclusion: Nucleotide substitution 390C-T may play a role in the pathogenesis of non-syndromic hypospadias. The genotype-phenotype correlation should be confirmed by a larger-scale analysis.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3075-3075
Author(s):  
Aline Renneville ◽  
Sophie Kaltenbach ◽  
Emmanuelle Clappier ◽  
Sandra Collette ◽  
Jean-Baptiste Micol ◽  
...  

Abstract Abstract 3075 Poster Board III-12 The Wilms' tumor 1 (WT1) gene, located at chromosome band 11p13, encodes a transcriptional regulator involved in normal hematopoietic development. WT1 mutations have been identified in approximately 10 % of acute myeloid leukemia (AML), where it has recently been found to predict poor outcome, but also in T-cell acute lymphoblastic leukemias (T-ALL). Our aim was to evaluate the frequency, the main associated features and the prognostic significance of WT1 mutations in a cohort of pediatric patients with T-ALL treated according to EORTC-CLG trials. A total of 146 children, aged 7 months to 17 years, with newly diagnosed T-ALL were included in this study. Patients were treated according to 2 consecutive EORTC trials: 58 881 and 58 951. Immunophenotypic subtypes were classified according to the EGIL. Standard karyotype as well as molecular screening of HOX11/TLX1, HOX11L2/TLX3 and HOXA10 overexpression, SIL-TAL, NUP214-ABL, CALM-AF10 fusions were performed at diagnosis. WT1 transcript level was quantified by real-time PCR (RQ-PCR). Mutations of NOTCH1 exons 26, 27, 34, FBXW7 exons 9, 10, and WT1 exon 7, 9 were screened by direct sequencing. At least one WT1 mutation was found at diagnosis in 15 out of 146 (10%) T-ALL. WT1 mutations were predominantly exon 7 frameshift mutations (14/15 cases), consisting of small duplications, deletions or combined insertions/deletions, and were predicted to result in the production of a truncated protein missing the normal zinc finger domain. The remaining mutated patient harbored a somatically acquired missense mutation in exon 9 (C388Y), previously described in Denys-Drash syndrome. Only 4 out of 15 (27%) patients had 2 WT1 mutations and all WT1 mutations identified showed retention of the wild-type allele. Clonal evolution was investigated by analysis of 12 diagnostic-relapse pairs. Identical WT1 mutation was found at relapse in 3/4 mutated patients whereas 1/4 patients acquired an additional WT1 exon 7 mutation at relapse. One of the 8 patients with WT1 wild-type T-ALL at diagnosis acquired a WT1 exon 7 mutation at relapse. WT1 mutated and wild-type patients did not significantly differ in terms of age, gender, white blood cell count, or mediastinal involvement. Interestingly, WT1 mutated patients had significantly higher WT1 mRNA expression levels (median: 84% [25-837] for WT1 mutants vs 17% [0.007-657] for WT1 wild-type cases, p=0.005). This is in line with the trend for earlier developmental stage arrest observed in our WT1 mutated T-ALL as compared with WT1 wild-type T-ALL. Indeed, WT1 is preferentially expressed in immature hematopoietic progenitors and down-regulated in more differentiated cells. No association was found between the presence of WT1 mutations and NOTCH1 activating lesions. WT1 mutation was associated with HOX genes deregulation. HOX11 or HOX11L2 were overexpressed in 10/15 (67%) WT1 mutated ALL versus 29/123 (24%) WT1 wild-type ALL (p=0.001). In addition, HOXA overexpression and MLL-AF6 were found in one WT1 mutated T-ALL each. Overall, HOX deregulation was demonstrated in 12/15 (80%) WT1 mutated ALL at diagnosis and was also found in the T-ALL that acquired WT1 mutation at relapse. Despite being subclonal lesions strongly associated with HOX11 and HOX11L2 overexpression in T-ALL, WT1 mutations and NUP214-ABL fusion were found independent. A possible impact of WT1 mutation on outcome was investigated. The incidence of very high risk features was similar for patients with WT1 mutated and wild-type T-ALL. No significant differences were found between the WT1 mutated and wild-type group regarding 5-year event free survival (71.6% vs 74.1%; Wald test stratified for protocol: p=0.8) and overall survival (81.8% vs 81.3%; p=0.9). Notably, HOX112 overexpression, which is found in half of WT1 mutated T-ALL, has no pejorative impact either on outcome in EORTC trials. In conclusion, our study confirms that the type and incidence of WT1 mutations are very similar in pediatric T-ALL and AML, although the frequency of bi-allelic alterations may be lower in T-ALL. However, in contrast with AML, no pejorative outcome was associated with WT1 mutation. Moreover, we found that WT1 mutations are highly associated with direct or indirect aberrant HOX genes expression. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 995-995 ◽  
Author(s):  
Wanlong Ma ◽  
Hagop Kantarjian ◽  
XI Zhang ◽  
Xiuqiang Wang ◽  
Zhong Zhang ◽  
...  

Abstract Abstract 995 Poster Board I-17 Several reports have suggested that mutations in the Wilms tumor 1 gene (WT1) represent an adverse prognostic factor in acute myeloid leukemia (AML). Here we examined the associations of WT1 mutations in exons 7 and 9 and the silent R301 single-nucleotide polymorphism (SNP) in exon 7 (A903G; NCBI dbSNP reference ID: rs16754) with outcome in AML patients treated at a single institution. Peripheral blood plasma and bone marrow samples from 174 newly diagnosed AML patients were tested for WT1 mutations in exons 7 and 9 by sequencing and fragment-length analysis for the detection of small deletions/insertions. Sequencing provided information on the specific genotype of the rs16754 SNP. The findings were correlated with outcome and other laboratory findings. WT1 mutation was detected in 7 of 50 (14%) AML patients <50 years of age and in 5 of 124 (4%) patients >50. The silent R301 SNP was detected at frequencies of 4% for GG, 26% for GA, and 70% for AA genotypes, but there was no difference with age. A similar SNP genotype distribution was detected in normal control subjects. WT1 mutations were associated with higher white cell count (P=0.01) and higher percentage of blasts in bone marrow (P=0.03) and peripheral blood (P=0.009). In addition, WT1 mutation was significantly associated with FLT3 mutation (P=0.002) but not NPM1 mutation (P=0.8). WT1 mutation was also significantly associated with shorter survival (P=0.025), event-free survival (P=0.002), and complete remission duration (P=0.002) in patients <50 years of age, but not in older patients. The association with shorter survival persisted when only patients with intermediate cytogenetics were considered (P=0.03). There was no correlation between WT1 mutation and response to therapy. The most striking correlation was between the presence of the GG genotype at R301 and longer survival, irrespective of age (see survival chart below). There was no difference in survival between the AA and GA groups. To the best of our knowledge, this is the first report describing correlation between survival duration and an SNP in the WT1 gene. While we confirm that the presence of WT1 mutation is associated with poor outcome in young AML patients, our data suggest that there is no clinical value in testing patients older than 50 for WT1 mutation, but that there may be value in testing adult patients of all age groups for the SNP polymorphism at R301 Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 1 (1) ◽  
pp. 6-12
Author(s):  
Fatima Javeria ◽  
Shazma Altaf ◽  
Alishah Zair ◽  
Rana Khalid Iqbal

Schizophrenia is a severe mental disease. The word schizophrenia literally means split mind. There are three major categories of symptoms which include positive, negative and cognitive symptoms. The disease is characterized by symptoms of hallucination, delusions, disorganized thinking and speech. Schizophrenia is related to many other mental and psychological problems like suicide, depression, hallucinations. Including these, it is also a problem for the patient’s family and the caregiver. There is no clear reason for the disease, but with the advances in molecular genetics; certain epigenetic mechanisms are involved in the pathophysiology of the disease. Epigenetic mechanisms that are mainly involved are the DNA methylation, copy number variants. With the advent of GWAS, a wide range of SNPs is found linked with the etiology of schizophrenia. These SNPs serve as ‘hubs’; because these all are integrating with each other in causing of schizophrenia risk. Until recently, there is no treatment available to cure the disease; but anti-psychotics can reduce the disease risk by minimizing its symptoms. Dopamine, serotonin, gamma-aminobutyric acid, are the neurotransmitters which serve as drug targets in the treatment of schizophrenia. Due to the involvement of genetic and epigenetic mechanisms, drugs available are already targeting certain genes involved in the etiology of the disease.


2021 ◽  
Vol 22 (5) ◽  
pp. 2754
Author(s):  
Naila Qayyum ◽  
Muhammad Haseeb ◽  
Moon Suk Kim ◽  
Sangdun Choi

Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background Acute lung injury (ALI) is a pulmonary disorder that leads to acute respiration failure and thereby results in a high mortality worldwide. Increasing studies have indicated that toll-like receptor 4 (TLR4) is a promoter in ALI, and we aimed to explore the underlying upstream mechanism of TLR4 in ALI. Methods We used lipopolysaccharide (LPS) to induce an acute inflammatory response in vitro model and a murine mouse model. A wide range of experiments including reverse transcription quantitative polymerase chain reaction, western blot, enzyme linked immunosorbent assay, flow cytometry, hematoxylin–eosin staining, RNA immunoprecipitation, luciferase activity and caspase-3 activity detection assays were conducted to figure out the expression status, specific role and potential upstream mechanism of TLR4 in ALI. Result TLR4 expression was upregulated in ALI mice and LPS-treated primary bronchial/tracheal epithelial cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to results of luciferase reporter assay. In addition, miR-26a-5p overexpression decreased the contents of proinflammatory factors and inhibited cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI by regulating TLR4. Afterwards, OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was identified to bind with miR-26a-5p. Functionally, OIP5-AS1 upregulation promoted the inflammation and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on cell inflammatory response and apoptosis. Conclusion OIP5-AS1 promotes ALI by regulating the miR-26a-5p/TLR4 axis in ALI mice and LPS-treated cells, which indicates a promising insight into diagnostics and therapeutics in ALI.


2015 ◽  
Vol 123 (4) ◽  
pp. 989-997 ◽  
Author(s):  
Keiichi Sakai ◽  
Shigetaka Shimodaira ◽  
Shinya Maejima ◽  
Nobuyuki Udagawa ◽  
Kenji Sano ◽  
...  

OBJECT Dendritic cell (DC)-based vaccination is considered a potentially effective therapy against advanced cancer. The authors conducted a Phase I study to investigate the safety and immunomonitoring of Wilms’ tumor 1 (WT1)-pulsed DC vaccination therapy for patients with relapsed malignant glioma. METHODS WT1-pulsed and/or autologous tumor lysate-pulsed DC vaccination therapy was performed in patients with relapsed malignant gliomas. Approximately 1 × 107 to 2 × 107 pulsed DCs loaded with WT1 peptide antigen and/or tumor lysate were intradermally injected into the axillary areas with OK-432, a streptococcal preparation, at 2-week intervals for at least 5–7 sessions (1 course) during an individual chemotherapy regimen. RESULTS Ten patients (3 men, 7 women; age range 24–64 years [median 39 years]) with the following tumors were enrolled: glioblastoma (6), anaplastic astrocytoma (2), anaplastic oligoastrocytoma (1), and anaplastic oligodendroglioma (1). Modified WT1 peptide–pulsed DC vaccine was administered to 7 patients, tumor lysate-pulsed DC vaccine to 2 patients, and both tumor lysate–pulsed and WT1-pulsed DC vaccine to 1 patient. The clinical response was stable disease in 5 patients with WT1-pulsed DC vaccination. In 2 of 5 patients with stable disease, neurological findings improved, and MR images showed tumor shrinkage. No serious adverse events occurred except Grade 1–2 erythema at the injection sites. WT1 tetramer analysis detected WT1-reactive cytotoxic T cells after vaccination in patients treated with WT1-pulsed therapy. Positivity for skin reaction at the injection sites was 80% (8 of 10 patients) after the first session, and positivity remained for these 8 patients after the final session. CONCLUSIONS This study of WT1-pulsed DC vaccination therapy demonstrated safety, immunogenicity, and feasibility in the management of relapsed malignant gliomas.


Sign in / Sign up

Export Citation Format

Share Document