scholarly journals Long non-coding RNA OIP5-AS1 aggravates acute lung injury by promoting inflammation and cell apoptosis via regulating the miR-26a-5p/TLR4 axis

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background Acute lung injury (ALI) is a pulmonary disorder that leads to acute respiration failure and thereby results in a high mortality worldwide. Increasing studies have indicated that toll-like receptor 4 (TLR4) is a promoter in ALI, and we aimed to explore the underlying upstream mechanism of TLR4 in ALI. Methods We used lipopolysaccharide (LPS) to induce an acute inflammatory response in vitro model and a murine mouse model. A wide range of experiments including reverse transcription quantitative polymerase chain reaction, western blot, enzyme linked immunosorbent assay, flow cytometry, hematoxylin–eosin staining, RNA immunoprecipitation, luciferase activity and caspase-3 activity detection assays were conducted to figure out the expression status, specific role and potential upstream mechanism of TLR4 in ALI. Result TLR4 expression was upregulated in ALI mice and LPS-treated primary bronchial/tracheal epithelial cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to results of luciferase reporter assay. In addition, miR-26a-5p overexpression decreased the contents of proinflammatory factors and inhibited cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI by regulating TLR4. Afterwards, OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was identified to bind with miR-26a-5p. Functionally, OIP5-AS1 upregulation promoted the inflammation and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on cell inflammatory response and apoptosis. Conclusion OIP5-AS1 promotes ALI by regulating the miR-26a-5p/TLR4 axis in ALI mice and LPS-treated cells, which indicates a promising insight into diagnostics and therapeutics in ALI.

2021 ◽  
pp. 1-10
Author(s):  
Hong Wang ◽  
Shuqin Wang ◽  
Shanshan Huang

Acute lung injury (ALI) is a severe respiratory disorder with a high rate of mortality, and is characterized by excessive cell apoptosis and inflammation. MicroRNAs (miRNAs) play pivotal roles in ALI. This study examined the biological function of miR-494-3p in cell apoptosis and inflammatory response in ALI. For this, mice were injected with lipopolysaccharide (LPS) to generate an in-vivo model of ALI (ALI mice), and WI-38 cells were stimulated with lipopolysaccharide (LPS) to generate an in-vitro model of ALI. We found that miR-494-3p was significantly downregulated in the ALI mice and in the in-vitro model. Overexpression of miR-494-3p inhibited inflammation and cell apoptosis in the LPS-induced WI-38 cells, and improved the symptoms of lung injury in the ALI mice. We then identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a novel target of miR-494-3p in the WI-38 cells. Furthermore, miR-494-3p suppressed cell apoptosis and the inflammatory response in LPS-treated WI-38 cells through targeting CMPK2. The NLRP3 inflammasome is reportedly responsible for the activation of inflammatory processes. In our study, CMPK2 was confirmed to activate the NLRP3 inflammasome in LPS-treated WI-38 cells. In conclusion, miR-494-3p attenuates ALI through inhibiting cell apoptosis and the inflammatory response by targeting CMPK2, which suggests the value of miR-494-3p as a target for the treatment for ALI.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Deqiang Luo ◽  
Wei Dai ◽  
Xiaojin Feng ◽  
Chengzhi Ding ◽  
Qiang Shao ◽  
...  

AbstractAcute lung injury (ALI) is a common lung pathology that is accompanied by alveolar macrophage (AM) activation and inflammatory response. This study investigated the role of the long non-coding RNA NONRATT004344 (hereafter named lncRNA NLRP3) in regulating the Nod-like receptor protein 3 (NLRP3)-triggered inflammatory response in early ALI and the underlying mechanism as well. We established LPS-induced ALI models to explore their interactive mechanisms in vitro and in vivo. Luciferase reporter assays were performed to determine that miR-138-5p could bind to lncRNA NLRP3 and NLRP3. We observed increased lncRNA NLRP3 expression, decreased miR-138-5p expression, NLRP3 inflammasome activation, and upregulated caspase-1, IL-1β, and IL-18 expression in the LPS-induced ALI model. Furthermore, lncRNA NLRP3 overexpression activated the NLRP3 inflammasome and promoted IL-1β and IL-18 secretion; the miR-138-5p mimic abolished these effects in vivo and in vitro. Consistently, miR-138-5p inhibition reversed the effects of lncRNA NLRP3 silencing on the expression of NLRP3-related molecules and inhibition of the NLRP3/caspase-1/IL-1β signalling pathway. Mechanistically, lncRNA NLRP3 sponging miR-138-5p facilitated NLRP3 activation through a competitive endogenous RNA (ceRNA) mechanism. In summary, our results suggested that lncRNA NLRP3 binding miR-138-5p promotes NLRP3-triggered inflammatory response via lncRNA NLRP3/miR-138-5p/NLRP3 ceRNA network (ceRNET) and provides insights into the treatment of early ALI.


2021 ◽  
Author(s):  
Qingsong Sun ◽  
Man Luo ◽  
Zhiwei Gao ◽  
Xiang Han ◽  
Weiqin Wu ◽  
...  

Abstract Background: Acute lung injury (ALI) is a pulmonary disorder that leads to acute failure of respiration and thereby results in a high mortality worldwide. Increasing studies have verified that TLR4 is a promoter in ALI, however, the underlying upstream mechanisms of TLR4 was still rarely investigated. Methods: Lipopolysaccharide (LPS) was used to induce cell model and animal model. A wide range of experiments including RT-qPCR, Western blot, ELISA, flow cytometry, H&E staining, RIP, luciferase activity and caspase-3 activity were carried out to figure out the expression status, specific role and potential upstream mechanism of TLR4.Result: RT-qPCR identified that TLR4 expression was upregulated in ALI mice and LPS-induced WI-38 cells. Moreover, miR-26a-5p was confirmed to target TLR4 according to luciferase reporter assay. Besides, miR-26a-5p overexpression decreased the contents of proinflammatory factors (TNF-α and IL-1β) and restrained cell apoptosis, while upregulation of TLR4 reversed these effects of miR-26a-5p mimics, implying that miR-26a-5p alleviated ALI through regulating TLR4. Afterwards, OIP5-AS1 was identified to bind with miR-26a-5p by RNA immunoprecipitation (RIP) and luciferase reporter assay. Functionally, OIP5-AS1 upregulation accelerated the inflammation injuries and miR-26a-5p overexpression counteracted the influence of OIP5-AS1 upregulation on proinflammatory factors and cell apoptosis.Conclusion: OIP5-AS1 accelerated ALI through regulating miR-26a-5p/TLR4 axis in ALI mice and LPS-induced cells, which indicates a promising insight into diagnostics and therapeutics in ALI.


Inflammation ◽  
2021 ◽  
Author(s):  
Yuhan Liu ◽  
Luorui Shang ◽  
Jiabin Zhou ◽  
Guangtao Pan ◽  
Fangyuan Zhou ◽  
...  

Abstract—Emodin, the effective component of the traditional Chinese medicine Dahuang, has anti-inflammatory effects. However, the protective effects and potential mechanisms of emodin are not clear. This study investigated the protective effects and potential mechanisms of emodin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in vitro and in vivo. In vivo, we designed an LPS-induced ALI rat model. In vitro, we chose the J774A.1 cell line to establish an inflammatory cellular model, and knocked down NOD-like receptor family pyrin domain containing 3 (NLRP3) using small interfering RNA. The mRNA and protein expression of NLRP3, a C-terminal caspase recruitment domain (ASC), caspase 1 (CASP1), and gasdermin D (GSDMD) in cells and lung tissues were detected by western blot and real-time quantitative polymerase chain reaction (PCR). The expression levels of interleukin 1 beta (IL-1β) and IL-18 in the serum and supernatant were determined by the enzyme-linked immunosorbent assay. The degree of pathological injury in lung tissue was evaluated by hematoxylin and eosin (H&E) staining. In vitro, we demonstrated that emodin could inhibit NLRP3 and then inhibit the expression of ASC, CASP1, GSDMD, IL-1β, and IL-18. In vivo, we confirmed that emodin had protective effects on LPS-induced ALI and inhibitory effects on NLRP3 inflammasome -dependent pyroptosis. Emodin showed excellent protective effects against LPS-induced ALI by regulating the NLRP3 inflammasome-dependent pyroptosis signaling pathway.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098635
Author(s):  
Qi Gao ◽  
Ningqing Chang ◽  
Donglian Liu

Objectives To investigate the mechanisms underlying the protective effect of sufentanil against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The targets and promoter activities of IκB were assessed using a luciferase reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue, pulmonary edema and secretion of inflammatory factors associated with ALI in vivo and in vitro. In addition, sufentanil suppressed apoptosis induced by LPS and activated NF-κB both in vivo and in vitro. Furthermore, upregulation of high mobility group box protein 1 (HMGB1) protein levels and downregulation of miR-129-5p levels were observed in vivo and in vitro following sufentanil treatment. miR-129-5p targeted the 3ʹ untranslated region and its inhibition decreased promoter activities of IκB-α. miR-129-5p inhibition significantly weakened the protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression, suggesting that sufentanil represents a candidate drug for ALI protection and providing avenues for clinical treatment.


Author(s):  
Guang Li ◽  
Bo Wang ◽  
Xiangchao Ding ◽  
Xinghua Zhang ◽  
Jian Tang ◽  
...  

AbstractExtracellular vesicles (EVs) can be used for intercellular communication by facilitating the transfer of miRNAs from one cell to a recipient cell. MicroRNA (miR)-210-3p is released into the blood during sepsis, inducing cytokine production and promoting leukocyte migration. Thus, the current study aimed to elucidate the role of plasma EVs in delivering miR-210-3p in sepsis-induced acute lung injury (ALI). Plasma EVs were isolated from septic patients, after which the expression of various inflammatory factors was measured using enzyme-linked immunosorbent assay. Cell viability and apoptosis were measured via cell counting kit-8 and flow cytometry. Transendothelial resistance and fluorescein isothiocyanate fluorescence were used to measure endothelial cell permeability. Matrigel was used to examine the tubulogenesis of endothelial cells. The targeting relationship between miR-210-3p and ATG7 was assessed by dual-luciferase reporter assays. The expression of ATG7 and autophagy-related genes was determined to examine autophagic activation. A sepsis mouse model was established by cecal ligation and puncture (CLP)-induced surgery. The level of miR-210-3p was highly enriched in septic EVs. MiR-210-3p enhanced THP-1 macrophage inflammation, BEAS-2B cell apoptosis, and HLMVEC permeability while inhibiting angiogenesis and cellular activity. MiR-210-3p overexpression reduced ATG7 and LC3II/LC3I expression and increased P62 expression. Improvements in vascular density and autophagosome formation, increased ATG7 expression, and changes in the ratio of LC3II/LC3I were detected, as well as reduced P62 expression, in adenovirus-anti-miR-210-3p treated mice after CLP injury. Taken together, the key findings of the current study demonstrate that plasma EVs carrying miR-210-3p target ATG7 to regulate autophagy and inflammatory activation in a sepsis-induced ALI model.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yiyi Jin ◽  
Jianchang Qian ◽  
Xin Ju ◽  
Xiaodong Bao ◽  
Li Li ◽  
...  

Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.


2020 ◽  
Author(s):  
Zhiyu Zhou ◽  
Yong Cui ◽  
Yapeng Hou ◽  
Tong Yu ◽  
Yan Ding ◽  
...  

Abstract Aims: One of the characteristics of acute lung injury (ALI) is severe pulmonary edema, which is closelyrelated to alveolar fluid clearance. Mesenchymal stem cells (MSCs) secrete a wide range of cytokines,growth factors and miRNAs through paracrine action to participate in the mechanism of pulmonaryinflammatory response, which increases the clearance of edema fluid, and promotes the repair process ofALI. However, the mechanism by which bone marrow derived MSCs-conditioned medium (BMSCs-CM)promotes edema clearance is unclear. Epithelial sodium channel (ENaC) is the rate-limiting step in thesodium-water transport and edema clearance in the alveolar cavity, and we aim to explore the role of ENaCin BMSCs-CM invloved edema clearance and whether it can alter the function of ENaC via miRNAs.Methods: CCK-8 cell proliferation assay was used to detect the effect of BMSCs-CM on the survival ofAT2 cells. Real-time PCR (RT-PCR) and Western blot were used to detect the expression of ENaC in AT2cells. The effects of exosomes/miR-34c on the transepithelial short-circuit current in the monolayer of H441cells were examined by the Ussing chamber setup. Dual luciferase reporter gene assay was used to detect thetarget gene of miR-34c.Results: BMSCs-CM can increase the viability of mouse AT2 cells. RT-PCR and Western blotting resultsshowed that BMSCs-CM significantly increased the expression of γ-ENaC subunit in mouse AT2 cells.Ussing chamber assay revealed that BMSCs-CM enhanced the amiloride-sensitive currents associated withENaC activity in intact H441 cell monolayers. In addition, we observed higher expression of miR-34c inmouse AT2 cells administrated with BMSCs-CM, and the overexpression or inhibition of miR-34c canregulate the expression of ENaC protein and alter the function of ENaC. Finally, we detected MARCKS maybe one of the target gene of miR-34c.Conclusions: Our results indicate that BMSCs-CM may improve LPS-induced ALI through miR-34ctargeting MARCKS and regulating ENaC indirectly, which further explores the benefit of paracrine effectsof BMSCs on edematous ALI.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3508
Author(s):  
Yukiko Takahashi ◽  
Takeshi Kawasaki ◽  
Hironori Sato ◽  
Yoshinori Hasegawa ◽  
Steven M. Dudek ◽  
...  

Excessive inflammation in the lung is a primary cause of acute respiratory distress syndrome (ARDS). CD26/dipeptidyl peptidase-4 (DPP4) is a transmembrane protein that is expressed in various cell types and exerts multiple pleiotropic effects. We recently reported that pharmacological CD26/DPP4 inhibition ameliorated lipopolysaccharide (LPS)-induced lung injury in mice and exerted anti-inflammatory effects on human lung microvascular endothelial cells (HLMVECs), in vitro. However, the mechanistic roles of CD26/DPP4 in lung injury and its effects on HLMVECs remain unclear. In this study, transcriptome analysis, followed by various confirmation experiments using siRNA in cultured HLMVECs, are performed to evaluate the role of CD26/DPP4 in response to the pro-inflammatory involved in inflammation, barrier function, and regenerative processes in HLMVECs after pro-inflammatory stimulation. These are all functions that are closely related to the pathophysiology and repair process of lung injury. Confirmatory experiments using flow cytometry; enzyme-linked immunosorbent assay; quantitative polymerase chain reaction; dextran permeability assay; WST-8 assay; wound healing assay; and tube formation assay, reveal that the reduction of CD26/DPP4 via siRNA is associated with altered parameters of inflammation, barrier function, and the regenerative processes in HLMVECs. Thus, CD26/DPP4 can play a pathological role in mediating injury in pulmonary endothelial cells. CD26/DPP4 inhibition can be a new therapeutic strategy for inflammatory lung diseases, involving pulmonary vascular damage.


2021 ◽  
Vol 12 ◽  
Author(s):  
An-qi Ren ◽  
Hui-jun Wang ◽  
Hai-yan Zhu ◽  
Guan Ye ◽  
Kun Li ◽  
...  

Background and Aims:Rabdosia japonica var. glaucocalyx is a traditional Chinese medicine (TCM) for various inflammatory diseases. This present work aimed to investigate the protective effects of R. japonica var. glaucocalyx glycoproteins on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the potential mechanism.Methods: Glycoproteins (XPS) were isolated from R. japonica var. glaucocalyx, and homogeneous glycoprotein (XPS5-1) was purified from XPS. ANA-1 cells were used to observe the effect of glycoproteins on the secretion of inflammatory mediators by enzyme-linked immunosorbent assay (ELISA). Flow cytometry assay, immunofluorescence assay, and Western blot analysis were performed to detect macrophage polarization in vitro. The ALI model was induced by LPS via intratracheal instillation, and XPS (20, 40, and 80 mg/kg) was administered intragastrically 2 h later. The mechanisms of XPS against ALI were investigated by Western blot, ELISA, and immunohistochemistry.Results:In vitro, XPS and XPS5-1 downregulated LPS-induced proinflammatory mediators production including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and nitric oxide (NO) and upregulated LPS-induced IL-10 secretion. The LPS-stimulated macrophage polarization was also modulated from M1 to M2. In vivo, XPS maintained pulmonary histology with significantly reducing protein concentration and numbers of mononuclear cells in bronchoalveolar lavage fluid (BALF). The level of IL-10 in BALF was upregulated by XPS treatment. The level of cytokines including TNF-α, IL-1β, and IL-6 was downregulated. XPS also decreased infiltration of macrophages and polymorphonuclear leukocytes (PMNs) in lung. XPS suppressed the expression of key proteins in the TLR4/NF-κB signal pathway.Conclusion: XPS was demonstrated to be a potential agent for treating ALI. Our findings might provide evidence supporting the traditional application of R. japonica var. glaucocalyx in inflammation-linked diseases.


Sign in / Sign up

Export Citation Format

Share Document