scholarly journals The Relationship of Plasma miR-29a and Oxidized Low Density Lipoprotein with Atherosclerosis

2016 ◽  
Vol 40 (6) ◽  
pp. 1521-1528 ◽  
Author(s):  
Yu-Qing Huang ◽  
An-Ping Cai ◽  
Ji-Yan Chen ◽  
Cheng Huang ◽  
Jie Li ◽  
...  

Background/Aims: Atherosclerosis is a chronic inflammatory condition associated with a variety of vascular diseases. Previous studies showed that both miR-29a and oxidized low density lipoprotein (ox-LDL) were vital in the development of atherosclerosis. However, the relationship between miR-29a and ox-LDL remains unknown. This study was designed to investigate the association of miR-29a and ox-LDL and to test whether circulating miR-29a and ox-LDL levels could predict atherosclerosis. Methods: In 170 participants, plasma levels of miR-29a were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) while plasma ox-LDL levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. The relationship between miR-29a level and ox-LDL and carotid intima-media thickness (cIMT) was assessed using the Spearman correlation coefficient and multiple liner regression. Results: Compared with the normal cIMT group, the increased cIMT group had higher levels of ox-LDL (0.47 ± 0.08 vs 0.29 ± 0.06 ng/ml, p = 0.003) and miR-29a (32.93 ± 4.26 vs 26.37 ± 1.04, p < 0.001). A positive correlation was found between ox-LDL and miR-29a (r = 0.695, p < 0.001), and both the ox-LDL (r = 0.857, p < 0.001) and the miR-29a (r = 0.753, p < 0.001) were positively related to cIMT. Furthermore, multiple liner regression indicated that a significant correlation between ox-LDL and cIMT (β = 0.768, p < 0.001), as well as between miR-29a and cIMT (β = 0.686, p <0.001). The combination of miR-29a and ox-LDL (AUC = 0.926, p < 0.001) offered a better predictive value for atherosclerosis than either miR-29a (AUC = 0.759, p < 0.001) or ox-LDL (AUC = 0.762, p < 0.001) alone. Conclusion: Increased miR-29a and ox-LDL levels were associated with an early stage of atherosclerosis, and the combination of miR-29a and ox-LDL offered better predictive values for atherosclerosis than either alone.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaojuan Wang ◽  
Ming Bai

Abstract Background Atherosclerosis (AS) is a chronic inflammatory disorder. The aim of our study was to explore the role of circular RNA (circRNA) transmembrane 7 superfamily member 3 (circTM7SF3) in AS progression. Methods Experiments were conducted using oxidized low-density lipoprotein (ox-LDL)-induced THP-1-derived macrophages and differentiated human monocyte-derived macrophages (hMDMs). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of circTM7SF3, its linear form TM7SF3, microRNA-206 (miR-206) and aspartyl (asparaginyl) β-hydroxylase (ASPH) messenger RNA (mRNA). Cell viability and apoptosis were examined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Cell inflammation was analyzed by measuring the production of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) using enzyme-linked immunosorbent assay (ELISA) kits. Cell oxidative stress was assessed through analyzing the levels of oxidative stress markers using their corresponding commercial kits. Dual-luciferase reporter assay and RNA-pull down assay were used to confirm the interaction between miR-206 and circTM7SF3 or ASPH. The protein level of ASPH was examined by Western blot assay. Results CircTM7SF3 level was markedly increased in the serum samples of AS patients and ox-LDL-induced THP-1-derived macrophages compared with their matching counterparts. ox-LDL induced-damage in THP-1 cells was partly attenuated by the interference of circTM7SF3. MiR-206 was a downstream molecular target of circTM7SF3. Si-circTM7SF3-mediated effects in ox-LDL-induced THP-1-derived macrophages were partly ameliorated by the addition of anti-miR-206. MiR-206 directly interacted with ASPH mRNA. CircTM7SF3 silencing reduced the expression of ASPH partly through up-regulating miR-206 in THP-1-derived macrophages. ASPH overexpression partly counteracted the effects induced by miR-206 overexpression in ox-LDL-induced THP-1-derived macrophages. Conclusion CircTM7SF3 contributed to ox-LDL-induced injury in AS cell model through up-regulating the expression of ASPH via targeting miR-206.


BMC Neurology ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lanying He ◽  
Ronghua Xu ◽  
Jian Wang ◽  
Lili Zhang ◽  
Lijuan Zhang ◽  
...  

Abstract Background Atrial fibrillation (AF) is a common cause of cerebral infarction, which could lead to endothelial dysfunction, increased reactive oxygen species (ROS) and oxidized low density lipoprotein (Ox-LDL).AF is associated with higher mortality and more severe neurologic disability. Statins may exert neuroprotective effects that are independent of LDL-C lowering. The purpose of our study was to investigate whether prestroke statins use could reduce plasma Ox-LDL levels and improve clinical outcomes in patients with AF-related acute ischemic stroke (AIS). Methods This was a multicenter prospective study that involved four medical centers, 242 AIS patients with AF were identified, who underwent a comprehensive clinical investigation and a 72 h-Holter electrocardiogram monitoring. All patients were divided into two groups: prestroke statins use and no prestroke statins use groups, who were followed up for 3 months. Plasma Ox-LDL levels were measured using enzyme-linked immunosorbent assay (ELISA) on admission and at 3 months. The outcome was death, major disability (modified Rankin Scale score ≥ 3), and composite outcome (death/major disability) at 3 months after AIS. Results One hundred thirty-six patients were in no prestroke statins use group, and 106 in prestroke statins use group. Plasma Ox-LDL levels were significantly lower in prestroke statins use than in no prestroke statins use on admission and at 3 months (P < 0.001). Plasma Ox-LDL levels on admission were associated with 3-month mortality [adjusted odds ratio (OR), 1.05; 95% confidence interval (CI), 0.99–1.12; P = 0.047]. In fully adjusted models, prestroke statins use was associated with reduced 3-month mortality [adjusted OR, 0.38; 95% CI, 0.16–0.91; P = 0.031)], major disability (adjusted OR, 0.38; 95% CI, 0.15–0.99; P = 0.047), and composite outcome (adjusted OR, 0.31; 95% CI, 0.17–0.74; P = 0.009). Conclusions Prestroke statins use can reduce plasma Ox-LDL levels and improve clinical outcomes in patients with AF-related AIS.


Sign in / Sign up

Export Citation Format

Share Document