In vitro Antibacterial Activity of 7-Substituted-6-Fluoroquinolone and 7-Substituted-6,8-Difluoroquinolone Derivatives

Chemotherapy ◽  
2017 ◽  
Vol 62 (3) ◽  
pp. 194-198 ◽  
Author(s):  
Socorro Leyva-Ramos ◽  
Denisse de Loera ◽  
Jaime Cardoso-Ortiz

Background: Fluoroquinolones are widely prescribed synthetic antimicrobial agents. Quinolones act by converting their targets, gyrase and topoisomerase IV, into toxic enzymes that fragment the bacterial chromosome; the irreversible DNA damage eventually causes the killing of bacteria. Thorough knowledge of the structure-activity relationship of quinolones is essential for the development of new drugs with improved activity against resistant strains. Methods: The compounds were screened for their antibacterial activity against 4 representing strains using the Kirby-Bauer disk diffusion method. Minimal inhibitory concentration (MIC) was determined by measuring the diameter of the inhibition zone using concentrations between 250 and 0.004 μg/mL. Results: MIC of derivatives 2, 3, and 4 showed potent antimicrobial activity against gram-positive and gram-negative bacteria. The effective concentrations were 0.860 μg/mL or lower. MIC for compounds 5-11 were between 120 and 515 μg/mL against Escherichia coli and Staphylococcus aureus, and substituted hydrazinoquinolones 7-10 showed poor antibacterial activity against gram-positive and gram-negative bacteria compared with other quinolones. Conclusion: Compounds obtained by modifications on C-7 of norfloxacin with the acetylated piperazinyl, halogen atoms, and substituted hydrazinyl showed good in vitro activity - some even better than the original compound.

2012 ◽  
Vol 7 (5) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Alexis Peña ◽  
Luis Rojas ◽  
Rosa Aparicio ◽  
Libia Alarcón ◽  
José Gregorio Baptista ◽  
...  

The essential oil of the leaves of Espeletia nana Cuatrec, obtained by hydrodistillation, was analyzed by GC-MS, which allowed the identification of 24 components, which made up 99.9% of the oil. The most abundant compounds were α-pinene (38.1%), β-pinene (17.2%), myrcene (15.0%), spathulenol (4.2%), bicyclogermacrene (4.0%), α-zingiberene (4.0%), and γhimachalene (3.7%). Antibacterial activity was tested against Gram-positive and Gram-negative bacteria using the agar disk diffusion method. Activity was observed only against Gram-positive bacteria. MIC values were determined for Staphylococcus aureus ATCC 25923(200 μg/mL) and Enterococcus faecalis ATCC 29212 (600 μg/mL).


2007 ◽  
Vol 53 (1) ◽  
pp. 75-81 ◽  
Author(s):  
M Shahid ◽  
Anwar Shahzad ◽  
Abida Malik ◽  
M Anis

Leaves, stem, and flowers of Saraca asoca, an endangered medicinal plant in India, and young explants cultivated on Murashige & Skoog's medium containing 6-benzylaminopurine were analyzed for antibacterial potential. Alcoholic and aqueous extracts from parent explants and their in vitro raised calli were tested by an agar well diffusion method. Minimal inhibitory concentrations (MICs) of the extracts were determined by broth microdilution method. Aqueous extracts showed antibacterial activity against limited bacterial species, whereas alcoholic extracts were active against a wider range of bacteria. Although the alcoholic extracts of all the explants and calli showed antibacterial activity, the extracts derived from flowers and their calli showed better results. Extracts derived from calli showed comparable results to the extracts from explants. Overall, the MICs of the extracts ranged from 0.039 to 1.25 mg/mL. MICs against Gram-positive bacteria ranged from 0.078 to 1.25 mg/mL, whereas they ranged between 0.039 and 0.625 mg/mL against Gram-negative bacteria. A MIC distribution plot showed that Gram-negative bacteria were more susceptible to the extracts than Gram-positive bacteria. It is concluded that extracts of S. asoca contain antibacterial agent, and as the calli gave good results, in vitro cultivation of the explants may be used to obtain antibacterial compounds. This is the first report on antibacterial activity of S. asoca, especially through in vitro raised calli.Key words: Saraca asoca, antibacterial activity, in vitro, callus, minimal inhibitory concentration.


Author(s):  
Sushma Vashisht ◽  
Manish Pal Singh ◽  
Viney Chawla

The methanolic extract of the resin of Shorea robusta was subjected to investigate its antioxidant and antibacterial properties its utility in free radical mediated diseases including diabetic, cardiovascular, cancer etc. The methanol extract of the resin was tested for antioxidant activity using scavenging activity of DPPH (1,1-diphenyl-2-picrylhydrazil) radical method, reducing power by FeCl3 and antibacterial activity against gram positive and gram negative bacteria using disc diffusion method. The phytochemical screening considered the presence of triterpenoids, tannins and flavoniods. Overall, the plant extract is a source of natural antioxidants which might be helpful in preventing the progress of various oxidative stress mediated diseases including aging. The half inhibition concentration (IC50) of resin extract of Shorea robusta and ascorbic acid were 35.60 µg/ml and 31.91 µg/ml respectively. The resin extract exhibit a significant dose dependent inhibition of DPPH activity. Antibacterial activity was observed against gram positive and gram negative bacteria in dose dependent manner.Key Words: Shorea robusta, antioxidant, antibacterial, Disc-diffusion, DPPH.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S386-S386
Author(s):  
Susan M Novak-Weekley ◽  
Aye Aye Khine ◽  
Tino Alavie ◽  
Namidha Fernandez ◽  
Laxman Pandey ◽  
...  

Abstract Background Conventional antimicrobial susceptibility testing (AST) of microorganisms from positive blood cultures (PBC) can take ≥ 2 days. In order to improve the turnaround time for AST on a PBC, CLSI and EUCAST have made efforts to standardize procedures for disk diffusion (DD) direct from a PBC. Qvella Corporation (Richmond Hill, ON, Canada) has recently developed FAST-Prep, an automated centrifugal sample preparation system that rapidly delivers a Liquid Colony consisting of a purified, concentrated, viable cell suspension directly from a PBC. This study was performed to investigate the feasibility of DD AST off of a PBC using a FAST-Prep Liquid Colony. Methods Contrived PBC samples were prepared by spiking 6 species of Gram-positive and 4 species of Gram-negative bacteria (3-5 strains per species) into FA® Plus bottles and incubating in the BACT/ALERT® VIRTUO® System (bioMerieux, Durham, NC). After positivity, 3 mL of PBC was added to the FAST-Prep cartridge. After 20 minutes of processing in the FAST-Prep instrument, the Liquid Colony was removed from the cartridge and a 0.5 McFarland sample was prepared for DD AST. In parallel, the DD AST from a PBC was performed using 4 drops of PBC (CLSI direct method). Both methods were compared to conventional colony-based DD AST. After 16-18 hours of incubation zone diameters and S/I/R interpretations were determined. Categorical agreement (CA) and errors for both DD AST methods were calculated. In addition, colony plate counting was performed on 0.5 McFarland suspensions of Liquid Colony and the plate colony to determine biomass recovery and sample purity. Results CA for a FAST-Prep DD AST for Gram-positive and Gram-negative bacteria was 95.6% and 98.6%, respectively, compared to CA for CLSI DD AST of 77.2% and 81.9%, respectively. Biomass in the Liquid Colony was 7.2x108 and 1.2x109 CFU for Gram-positive and Gram-negative bacteria, respectively. Cell concentration in the 0.5 McFarland suspension of the Liquid Colony was 3.7x107 and 5.9x107 CFU/mL for Gram-positive and Gram-negative bacteria, respectively, which was similar to the concentration for the reference colony suspension. Conclusion The results support the potential role of FAST-Prep in providing a Liquid Colony for use in rapid AST. Disclosures Susan M. Novak-Weekley, PhD, D(ABMM), Qvella (Employee, Shareholder) Aye Aye Khine, PhD, Qvella (Employee, Shareholder) Tino Alavie, PhD, Qvella (Employee) Namidha Fernandez, MS, Qvella (Employee) Laxman Pandey, MS, Qvella (Employee) Abdossamad Talebpour, PhD, Qvella (Employee, Shareholder)


2021 ◽  
Vol 13 (1) ◽  
pp. 106-112
Author(s):  
Sri Kasmiyati ◽  
Elizabeth Betty Elok Kristiani ◽  
Maria Marina Herawati ◽  
Andreas Binar Aji Sukmana

The medicinal plant-derived bioactive compounds have a potential for many biological activities, including antimicrobial activity. Artemisia cina is a medicinal plant from the Compositae family with the potential of having antitumor, antifungal, and antibacterial activity. This study aimed to determine the antibacterial activity and the flavonoid content of A. Cina’s ethyl acetate extract. Plants samples were extracted by ethyl acetate maceration method. Antibacterial activity was tested against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) by a disk diffusion method using 25, 50, and 100 mg/l extract concentrations. The flavonoid contents (quercetin and kaempferol) were measured using High-Performance Liquid Chromatography. The extracts of diploid and polyploid A. cina displayed some antibacterial activity, with the Gram-negative bacteria being more resistant than the Gram-positive counterpart. However, no significant difference was observed between the diploid and polyploid extracts. As for the flavonoid content, the highest quercetin content (0.5501 mg/ml) was found in the polyploid A. cina (J), while the highest kaempferol content (0.5818 mg/ml) was observed in the diploid A. cina (KJT). Although A. cina is widely grown in Indonesia, compared to other Artemisia species, A. cina has not been widely studied, especially its antibacterial  potential and in related to its flavonoid content and the use of ethyl acetate as the extraction solvent.  This study reveals the potential of A. cina as a natural antibacterial agent. 


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Yohannes Kelifa Emiru ◽  
Ebrahim Abdela Siraj ◽  
Tekleab Teka Teklehaimanot ◽  
Gedefaw Getnet Amare

Objective. To evaluate the antibacterial effects of the leaf latex of Aloe weloensis against infectious bacterial strains. Methods. The leaf latex of A. weloensis at different concentrations (400, 500, and 600 mg/ml) was evaluated for antibacterial activities using the disc diffusion method against some Gram-negative species such as Escherichia coli (ATCC 14700) and Pseudomonas aeruginosa (ATCC 35619) and Gram-positive such as Staphylococcus aureus (ATCC 50080) and Enterococcus fecalis (ATCC 4623). Results. The tested concentrations of the latex ranging between 400 and 600 mg·mL−1 showed significant antibacterial activity against bacterial strain. The highest dose (600 mg/ml) of A. weloensis leaf latex revealed the maximum activity (25.93 ± 0.066 inhibition zone) followed by the dose 500 mg/ml against S. aureus. The lowest antibacterial activity was observed by the concentration 400 mg/ml (5.03 ± 0.03) against E. coli. Conclusion. The results of the present investigation suggest that the leaf latex of A. weloensis can be used as potential leads to discover new drugs to control some bacterial infections.


Author(s):  
Pooja Pisal ◽  
Meenakshi Deodhar ◽  
Amol Kale ◽  
Ganesh Nigade ◽  
Smita Pawar

Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.


2013 ◽  
Vol 11 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Igor Stojanovic ◽  
Niko Radulovic ◽  
Vladimir Cvetkovic ◽  
Tatjana Mitrovic ◽  
Slavisa Stamenkovic

Antimicrobial activity of methanol extracts of four Parmeliaceae lichens (Hypogymnia physodes (L.) Nyl., Evernia prunastri (L.) Ach., Flavoparmelia caperata (L.) Hale and Parmelia sulcata Taylor) against a panel of microbial strains (11 Gram-positive (Enterococus sp., Bacillus subtilllis, Sarcina lutea, Micrococus luteus, Staphylococcus aureus, Clostridium sporogenes) and Gram-negative bacteria (Escherichia coli, Proteus vulgaris, Salmonela enteritidis, Pseudomonas aeruginosa, Klebsiella pneumoniae), the filamentous fungus A. niger and the yeast C. albicans) was assayed using a disk diffusion method (1 mg of the extract per disc; extracts were dissolved in methanol, 25 mg/mL). All tested extracts showed moderate antimicrobial activity. Multivariate statistical treatment (agglomerative hierarchical clustering analysis, AHC) of the obtained results allowed grouping of the samples according to their antimicrobial potential against different strains: antimicrobial profile of H. physodes and E. prunastri extracts were comparable; the similar is true for F. caperata and P. sulcata samples. In addition, based on the similarities/ dissimilarities in their susceptibility toward the tested extracts, two groups of microorganisms could be distinguished: Group I - P. vulgaris, K. pneumoniae (Gram-negative bacteria), A. niger and C. albicans; Group II - E. coli, S. enteritidis, P. aeruginosa (Gram-negative bacteria) and all of the assayed Gram-positive strains.


Sign in / Sign up

Export Citation Format

Share Document