scholarly journals Permanently Hypoxic Cell Culture Yields Rat Bone Marrow Mesenchymal Cells with Higher Therapeutic Potential in the Treatment of Chronic Myocardial Infarction

2017 ◽  
Vol 44 (3) ◽  
pp. 1064-1077 ◽  
Author(s):  
Yihua Liu ◽  
Xiaoxi Yang ◽  
Pablo Maureira ◽  
Aude Falanga ◽  
Vanessa Marie ◽  
...  

Background: The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs). This study sought to address (i) the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii) the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI) in rats. Methods: rat BMSCs were harvested and cultured in normoxic (21% O2, n=27) or hypoxic conditions (5% O2, n=27) until Passage 4 (P4). Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6) or hypoxia (n=6) were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Results: Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Conclusion: Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting angiogenesis.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Eleni Tseliou ◽  
Joseph Fouad ◽  
Geoffrey de Couto ◽  
Ryan Middleton ◽  
Liu Weixin ◽  
...  

Background: Multicellular self-assembling cardiospheres (CSps) exert regenerative and anti-fibrotic effects via paracrine mechanisms. CSp-derived cells are known to secrete exosomes which mediate most or all of the beneficial therapeutic effects. Objective: We evaluated the regenerative capacity of CSp-secreted exosomes in a model of chronic myocardial infarction (MI). We also determined whether CSp-exosomes could convert the phenotype of therapeutically-inert cells. Methods: Exosomes were isolated from CSp-conditioned media by adding a precipitation solution followed by centrifugation. One month post-MI, Wistar Kyoto rats (n=46) with permanent LAD ligation were injected intramyocardially with: a) human dermal fibroblasts (DFs), b) CSp exosomes, c) DFs primed with CSp-exosomes, d) CSps only or e) vehicle. Functional and histological analyses were performed 4 weeks after therapy. Mechanisms were also probed in vitro . Results: In vivo, CSp-exosomes and CSps equally increased ejection fraction (EF= 45±1% [CSp-exo], 44±2% [CSps], 33±1% [placebo] and 35±2% [DFs]) and reduced scar mass (48±8mg [CSp-exo], 45±4mg [CSps], 96±12mg [placebo] and 90±6mg [DFS]; both p<0.01 by one way ANOVA). DFs that had been incubated with CSp-exosomes for 24 hours in culture conferred enhanced benefits compared to unprimed DFs (EF= 41±1% [primed-DFs]; p=0.05 vs unprimed DFs; scar mass= 49±5mg [primed-DFs]; p<0.01 vs unprimed DFs). Confocal imaging revealed internalization of fluorescently-labeled CSp-exosomes in exosome-primed DFs. In vitro , exosome-primed DFs increased tube formation by HUVECs and inhibited cardiomyocyte apoptosis. Immunohistochemistry showed increased vessel density in all groups compared to vehicle or unprimed DFs. Conclusions: Administration of CSp-exosomes recapitulates the regenerative potential and functional benefits of CSps themselves. The surprising ability of CSp-exosomes to confer therapeutic efficacy on inert DFs may represent an unanticipated amplification mechanism for exosome-mediated benefits.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4882-4882
Author(s):  
Omar S. Aljitawi ◽  
Dandan Li ◽  
Da Zhang ◽  
Jonathan Mahnken ◽  
Suman Kambhampati ◽  
...  

Abstract Abstract 4882 Introduction: Current in vitro drug testing models are based on 2-dimensional (2D) cell culture systems and therefore do not always predict in vivo responses. This lack of predictability of the 2D assays is believed to be related to the 3-dimensional (3D) microenvironment present in tissues or tumors. This 3D microenvironment, were cell-cell and cell-extracellular matrix (ECM) interactions occur, is fundamental for cell biologic activities. This is especially true for acute myeloid leukemia, were current 2-D cell culture models do not always predict clinical responses. This discrepancy in leukemia cell responses to chemotherapy in vivo, in comparison to in vitro, is at least partly related to leukemia cells interaction with the bone marrow microenvironment and their ability to establish niches. These niches offer partial protection from the effects of cytotoxic chemotherapy, otherwise termed cell adhesion-mediated drug resistance. In these experiments, we investigate the apoptotic effects of cytotoxic chemotherapy on HL-60 cell line cultured in a designed 3D AML cell culture model. In this 3D microenvironment, HL-60 cells were co-cultured with ex vivo expanded bone marrow mesenchyaml stem cells in a 3D synthetic scaffold. Aim: To examine the apoptotic effect of cytotoxic chemotherapy on HL-60 co-cultured with human bone marrow mesenchymal stem cells (huBM-MSCs) in 3D conditions. Methods: After several passages, expanded huBM-MSCs were seeded into PGA/PLLA 90/10 copolymer discs, 5-mm in diameter and 2-mm in thickness and allowed to attach to scaffold fibers and to expand over 2 weeks. Then, HL-60 were added and allowed to grow in the 3D culture system for another 10 days. HL-60 cells in 3D culture system were then exposed to doxorubicin given in two concentrations (25 and 50 μM) and incubated for 24 hours. HL-60 were then retrieved applying a combination of mechanical forces and using cell dissociation solution. FITC Annexin V Apoptosis Detection Kit was used to determine apoptosis. Apoptosis was confirmed by TUNEL assay. Proliferation of HL-60 cells in the 3D scaffold was assessed using Ki-67 stain of scaffold's cryosections. All tests were done in triplicates, and untreated HL-60 served as controls for treatment. Comparison was made with HL-60 cells alone and with HL-60 cells growing on a hu-BM-MSC monolayer. SAS version 9.2 (SAS Institute, Inc., 2002–2008) was used for statistical analysis Results: Virtually, all HL-60 cells treated with 25 or 50 μM underwent late apoptosis. Around.03% of HL-60 cells survived 25 μM concentration, none, however, survived 50 μM concentration. In 2D, most of HL-60 cells underwent necrosis, and to lesser extent late apoptosis. In sharp contrast, 17.8% of HL-60 cells survived 25μM concentration, nevertheless, only.27% of HL-60 cells treated with 50 μM concentration survived. The differences in apoptosis patterns between the three groups was statistically significant (P<.0001). Conclusion: compared to traditional cell culture conditions, the designed 3D culture conditions protected a higher percentage of HL-60 cells from undergoing apoptosis and necrosis. Disclosures: No relevant conflicts of interest to declare.


1976 ◽  
Vol 35 (01) ◽  
pp. 049-056 ◽  
Author(s):  
Christian R Klimt ◽  
P. H Doub ◽  
Nancy H Doub

SummaryNumerous in vivo and in vitro experiments, investigating the inhibition of platelet aggregation and the prevention of experimentally-induced thrombosis, suggest that anti-platelet drugs, such as aspirin or the combination of aspirin and dipyridamole or sulfinpyrazone, may be effective anti-thrombotic agents in man. Since 1971, seven randomized prospective trials and two case-control studies have been referenced in the literature or are currently being conducted, which evaluate the effects of aspirin, sulfinpyrazone, or dipyridamole in combination with aspirin in the secondary prevention of myocardial infarction. A critical review of these trials indicates a range of evidence from no difference to a favorable trend that antiplatelet drugs may serve as anti-thrombotic agents in man. To date, a definitive answer concerning the therapeutic effects of these drugs in the secondary prevention of coronary heart disease is not available.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathan Jeger-Madiot ◽  
Lousineh Arakelian ◽  
Niclas Setterblad ◽  
Patrick Bruneval ◽  
Mauricio Hoyos ◽  
...  

AbstractIn recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.


2015 ◽  
Vol 60 (3) ◽  
pp. 1226-1233 ◽  
Author(s):  
Petros Ioannou ◽  
Aggeliki Andrianaki ◽  
Tonia Akoumianaki ◽  
Irene Kyrmizi ◽  
Nathaniel Albert ◽  
...  

The modestin vitroactivity of echinocandins againstAspergillusimplies that host-related factors augment the action of these antifungal agentsin vivo. We found that, in contrast to the other antifungal agents (voriconazole, amphotericin B) tested, caspofungin exhibited a profound increase in activity against variousAspergillusspecies under conditions of cell culture growth, as evidenced by a ≥4-fold decrease in minimum effective concentrations (MECs) (P= 0. 0005). Importantly, the enhanced activity of caspofungin againstAspergillusspp. under cell culture conditions was strictly dependent on serum albumin and was not observed with the other two echinocandins, micafungin and anidulafungin. Of interest, fluorescently labeled albumin bound preferentially on the surface of germinatingAspergillushyphae, and this interaction was further enhanced upon treatment with caspofungin. In addition, supplementation of cell culture medium with albumin resulted in a significant, 5-fold increase in association of fluorescently labeled caspofungin withAspergillushyphae (P< 0.0001). Collectively, we found a novel synergistic interaction between albumin and caspofungin, with albumin acting as a potential carrier molecule to facilitate antifungal drug delivery toAspergillushyphae.


Cytotherapy ◽  
2011 ◽  
Vol 13 (9) ◽  
pp. 1140-1152 ◽  
Author(s):  
Monica Gunetti ◽  
Alessio Noghero ◽  
Fabiola Molla ◽  
Lidia Irene Staszewsky ◽  
Noeleen de Angelis ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 495-495
Author(s):  
Ryo Kurita ◽  
Erika Sasaki ◽  
Takashi Hiroyama ◽  
Tomoko Yokoo ◽  
Yukoh Nakazaki ◽  
...  

Abstract Since the successful establishment of human embryonic stem (ES) cell lines in 1998, transplantation of differentiated ES cells to specific organ has been expected to complete its defective function. For the realistic medicine, the preclinical studies using animal model systems including non-human primates are essential. We have already demonstrated that non-human primates of common marmosets (CM) are suitable for the laboratory animal models for preclinical studies of hematopoietic stem cell therapy. In this study, we investigated the in vitro and in vivo differentiation of CM ES cells to hematopoietic cells by exogenous gene transfer methods in order to study the feasibility of future gene modified ES cell therapy. First, we tried various in vitro culture conditions including systems using embryoid bodies or co-culturing with stromal cells to induce hematopoietic cells, but the frequency of inducing hematopoietic cells was very low. The expression of CD45 and gata1 could not be detected in both conditions, suggesting that our culture conditions were incomplete for induction of hematopoietic cells from CM ES cells. Next we examined gene transduction methods by using VSV-G pseudotyped human immunodeficiency virus (HIV) vectors. We constructed the HIV vectors containing hematopoietic genes such as tal1/scl, gata1, gata2, hoxB4 and Lh2 genes under the EF1a promoter and transduced them into CM ES cells. Only in the case of tal1/scl overexpression, not other genes, hematopoietic induction from CM ES cells was dramatically increased and multi-lineage blood cells consisting of erythroid cells, granulocytes, macrophages and megakaryocytes, were confirmed by immunochemical and morphological analyses. Furthermore, RT-PCR results showed that several hematopoietic marker genes including CD34 were expressed higher in the tal1/scl overexpressed ES-derived cells. After the xenotransplantation of ES-derived cells into the immunodeficient mice, CM CD45+ cells and immature erythroids and megakaryocytic cells were observed only in the ES-tal1-injected mice, indicating that enforced expression of tal1/scl into ES cells led to highly efficient hematopoietic cell differentiation in vivo. Taken together, it was suggested that the transduction of exogenous tal1/scl cDNA into ES cells by HIV vector was the promising method for the efficient differentiation from CM ES cells to hematopoietic stem cells. Further examinations are required to determine the long-term hematopoietic reconstitute capacity and the safety of the tal1/scl transduced ES cells in marmoset for the purpose of developing new hematopoietic stem cell therapy.


Cell Medicine ◽  
2017 ◽  
Vol 9 (1-2) ◽  
pp. 21-33 ◽  
Author(s):  
Yasuma Yoshizumi ◽  
Hiroshi Yukawa ◽  
Ryoji Iwaki ◽  
Sanae Fujinaka ◽  
Ayano Kanou ◽  
...  

Cell therapy with adipose tissue-derived stem cells (ASCs) is expected to be a candidate for the treatment of fulminant hepatic failure (FHF), which is caused by excessive immune responses. In order to evaluate the therapeutic effects of ASCs on FHF, the in vitro and in vivo immunomodulatory effects of ASCs were examined in detail in the mouse model. The in vitro effects of ASCs were examined by assessing their influence on the proliferation of lymphomononuclear cells (LMCs) stimulated with three kinds of mitogens: phorbol 12-myristate 13-acetate (PMA) plus ionomycin, concanavalin A (ConA), and lipopolysaccharide (LPS). The proliferation of LMCs was efficiently suppressed in a dose-dependent manner by ASCs in the cases of PMA plus ionomycin stimulation and ConA stimulation, but not in the case of LPS stimulation. The in vivo effects of transplanted ASCs were examined in the murine FHF model induced by ConA administration. The ALT levels and histological inflammatory changes in the ConA-administered mice were apparently relieved by the transplantation of ASCs. The analysis of mRNA expression patterns in the livers indicated that the expressions of the cytokines such as Il-6, Il-10, Ifn-γ, and Tnf-α, and the cell surface markers such as Cd3γ, Cd4, Cd8α, Cd11b, and Cd11c were downregulated in the ASC-transplanted mice. The immunomodulatory and therapeutic effects of ASCs were confirmed in the mouse model both in vitro and in vivo. These suggest that the cell therapy with ASCs is beneficial for the treatment of FHF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jialing Liu ◽  
Yanmei Zhang ◽  
Hongqin Sheng ◽  
Chunling Liang ◽  
Huazhen Liu ◽  
...  

Accumulating evidence reveals that both inflammation and lymphocyte dysfunction play a vital role in the development of diabetic nephropathy (DN). Hyperoside (HPS) or quercetin-3-O-galactoside is an active flavonoid glycoside mainly found in the Chinese herbal medicine Tu-Si-Zi. Although HPS has a variety of pharmacological effects, including anti-oxidative and anti-apoptotic activities as well as podocyte-protective effects, its underlying anti-inflammatory mechanisms remain unclear. Herein, we investigated the therapeutic effects of HPS on murine DN and the potential mechanisms responsible for its efficacy. We used C57BLKS/6J Lepdb/db mice and a high glucose (HG)-induced bone marrow-derived macrophage (BMDM) polarization system to investigate the potentially protective effects of HPS on DN. Our results showed that HPS markedly reduced diabetes-induced albuminuria and glomerular mesangial matrix expansion, accompanied with a significant improvement of fasting blood glucose level, hyperlipidaemia and body weight. Mechanistically, pretreatment with HPS effectively regulated macrophage polarization by shifting proinflammatory M1 macrophages (F4/80+CD11b+CD86+) to anti-inflammatory M2 ones (F4/80+CD11b+CD206+) in vivo and in bone marrow-derived macrophages (BMDMs) in vitro, resulting in the inhibition of renal proinflammatory macrophage infiltration and the reduction in expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) while increasing expression of anti-inflammatory cytokine Arg-1 and CD163/CD206 surface molecules. Unexpectedly, pretreatment with HPS suppressed CD4+ T cell proliferation in a coculture model of IL-4-induced M2 macrophages and splenic CD4+ T cells while promoting their differentiation into CD4+IL-4+ Th2 and CD4+Foxp3+ Treg cells. Taken together, we demonstrate that HPS ameliorates murine DN via promoting macrophage polarization from an M1 to M2 phenotype and CD4+ T cell differentiation into Th2 and Treg populations. Our findings may be implicated for the treatment of DN in clinic.


Sign in / Sign up

Export Citation Format

Share Document