scholarly journals ShenFu Preparation Protects AML12 Cells Against Palmitic Acid-Induced Injury Through Inhibition of Both JNK/Nox4 and JNK/NFκB Pathways

2018 ◽  
Vol 45 (4) ◽  
pp. 1617-1630 ◽  
Author(s):  
Jia-Fu Ji ◽  
Wan-Zhen Jiao ◽  
Yan Cheng ◽  
Hua Yan ◽  
Fan Su ◽  
...  

Background/Aims: Nonalcoholic steatohepatitis includes steatosis along with liver inflammation, hepatocyte injury and fibrosis. In this study, we investigated the protective role and the potential mechanisms of a traditional Chinese medicine ShenFu (SF) preparation in an in vitro hepatic steatosis model. Methods: In palmitic acid (PA)-induced murine hepatic AML12 cell injury, effects of SF preparation on cellular apoptosis and intracellular triglyceride (iTG) level were assessed using TUNEL and TG Colorimetric Assay. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) levels were measured using DCF and JC-1 assay. Cytokine levels were evaluated using ELISA assay. Immunoblot was used to compare the activation level of c-Jun N terminal kinase (JNK), NADPH oxidase (Nox4), and NFκB pathways. Results: Addition of SF preparation prevented PA-mediated increase of apoptosis and iTG as well as IL-8 and IL-6. In PA-treated cell, SF preparation reduced the level of Nox4 and ROS, while increasing the level of MMP and the expression of manganese superoxide dismutase (MnSOD) and catalase, indicating emendation of mitochondrial dysfunction. Nox4 inhibitor GKT137381 prevented PA-induced increase of ROS and apoptosis, while decreasing iTG slightly and not influencing the level of IL-8 and IL-6. SF preparation prevented PA-induced upregulation of phospho-JNK. JNK inhibitor SP600125 prevented PA-mediated increase of Nox4, IL-8, IL-6 and iTG. Nuclear translocation of NFκB/p65 was detected in PA-treated cells, which was prevented by SF preparation. An IκB degradation inhibitor, BAY11-7082, prevented PA-induced increase of IL-8 and IL-6 as well as iTG, whereas it only decreased ROS levels slightly and showed no influence on cellular apoptosis. Conclusion: SF preparation shows a beneficial role in prevention of hepatocyte injury by attenuating oxidative stress and cytokines production at least partially through inhibition of JNK/Nox4 and JNK/NFκB pathway, respectively.

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 745
Author(s):  
Peramaiyan Rajendran ◽  
Abdullah Alzahrani ◽  
Vishnu Priya Veeraraghavan ◽  
Emad A. Ahmed

This study investigates the endothelial protective activity of flavokawain A (FKA) against oxidative stress induced by ochratoxin A (OTA), which acts as a mycotoxin, and its primary mechanisms in in vitro models. Reactive oxygen species, in general, regulate oxidative stress that significantly contributes to the pathophysiology of endothelial dysfunctions. OTA exerts toxicity through inflammation and the accumulation of ROS. This research is aimed at exploring the defensive function of FKA against the endothelial injury triggered by OTA through the Nrf2 pathway regulated by PI3K/AKT. OTA exposure significantly increased the nuclear translocation of NFκB, whereas we found a reduction in inflammation via NFκB inhibition with FKA treatment. FKA increased the PI3K and AKT phosphorylation, which may lead to the stimulation of antioxidative and antiapoptotic signaling in HUVECs. It also upregulated the phosphorylation of Nrf2 and a concomitant expression of antioxidant genes, such as HO-1, NQO-1, and γGCLC, depending on the dose under the oxidative stress triggered by OTA. Knockdown of Nrf2 through small interfering RNA (siRNA) impedes the protective role of FKA against the endothelial toxicity induced by OTA. In addition, FKA enhanced Bcl2 activation while suppressing apoptosis marker proteins. Therefore, FKA is regarded as a potential agent against endothelial oxidative stress caused by the deterioration of the endothelium. The research findings showed that FKA plays a key role in activating the p-PI3K/p-AKT and Nrf2 signaling pathways, while suppressing caspase-dependent apoptosis.


2021 ◽  
pp. 096032712199798
Author(s):  
R Reis ◽  
D Orak ◽  
D Yilmaz ◽  
H Cimen ◽  
H Sipahi

Smoking is one of the most important leading death cause worldwide. From a toxicological perspective, cigarette smoke serves hazards especially for the human being exposed to passive smoke. Over the last decades, the effects of natural compounds on smoking-mediated respiratory diseases such as COPD, asthma, and lung cancer have been under investigation, as well as the mechanistic aspects of disease progression. In the present study, the protective mechanism of eucalyptol (EUC), curcumin (CUR), and their combination on BEAS-2B cells were investigated in vitro to understand their impact on cell death, oxidative cell injury, and inflammatory response induced by 3R4F reference cigarette extract (CSE). According to the present findings, EUC, CUR, and their combination improved cell viability, attenuated CSE-induced apoptosis, and LC3B expression. Further, CSE-induced oxidative damage and inflammatory response in human bronchial epithelial cells were remarkably reduced by the combination treatment through modification of enzymatic antioxidant activity, GSH, MDA, and intracellular ROS levels as well as nitrite and IL-6 levels. In addition, nuclear translocation of Nrf2, a regulatory protein involved in the indirect antioxidant response, was remarkably up-regulated with the combination pre-treatment. In conclusion, EUC and CUR in combination might be a potential therapeutic against smoking-induced lung diseases through antioxidant and inflammatory pathways and results represent valuable background for future in vivo pulmonary toxicity studies.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qiming Zhao ◽  
Yinliang Bai ◽  
Caie Li ◽  
Kun Yang ◽  
Wansheng Wei ◽  
...  

Oleuropein, the main glycoside present in olives, has been reported to have cardioprotective effect, but the exact mechanism has not been clearly elucidated. This study attempted to clarify the cardioprotective effect of oleuropein against simulated ischemia/reperfusion- (SI/R-) induced cardiomyocyte injury in vitro and further explore the underlying mechanism. Here we confirmed that oleuropein reduced the cell injury in neonatal rat cardiomyocyte induced by SI/R evidenced by decreasing MTT dye reduction and LDH activity in the culture medium. Meanwhile, the compound also inhibited reactive oxygen species excessive generation and stabilized mitochondrial membrane potential after SI/R. The flow cytometry assessment results indicated the inhibition of cellular apoptosis with oleuropein treatment. Furthermore, western blot analysis showed that oleuropein attenuated the expression of Cyt-C, c-caspase-3, and c-caspase-9, increased the Bcl-2/Bax ratio, and enhanced the phosphorylation of ERK1/2 and Akt after SI/R. However, the phosphorylation enhancement was partially abolished in the presence of LY294002 (PI3K inhibitor) and U0126 (ERK inhibitor). All these findings indicate that oleuropein has the protective potential against SI/R-induced injury and its protective effect may be partly due to the attenuation of apoptosis via the activation of the PI3K/Akt and ERK1/2 signaling pathways.


Author(s):  
Vikrant Borse ◽  
Matthew Barton ◽  
Harry Arndt ◽  
Tejbeer Kaur ◽  
Mark E. Warchol

AbstractThe Hippo pathway is an evolutionarily conserved signaling pathway involved in regulating organ size, development, homeostasis and regeneration1–4. YAP1 is a transcriptional coactivator and the primary effector of Hippo signaling. Upstream activation of the Hippo pathway leads to nuclear translocation of YAP1, which then evokes changes in gene expression and cell cycle entry5. A prior study has demonstrated nuclear translocation of YAP1 in the supporting cells of the developing utricle6, but the possible role of YAP1 in hair cell regeneration is unclear. The present study characterizes the cellular localization of YAP1 in the utricles of mice and chicks, both under normal conditions and after hair cell injury. During neonatal development of the mouse utricle, YAP1 expression was observed in the cytoplasm of supporting cells, and was also transiently expressed in the cytoplasm of hair cells. We also observed temporary nuclear translocation of YAP1 in supporting cells of the mouse utricle at short time periods after placement in organotypic culture. However, little or no nuclear translocation of YAP1 was observed after injury to the utricles of neonatal or mature mice. In contrast, a significant degree of YAP1 nuclear translocation was observed in the chicken utricle after streptomycin-induced hair cell damage in vitro and in vivo. Together, these data suggest that differences in YAP1 signaling may be partly responsible for the distinct regenerative abilities of the avian vs. mammalian inner ear.


2014 ◽  
Vol 121 (3) ◽  
pp. 549-562 ◽  
Author(s):  
Xin Li ◽  
Peng Luo ◽  
Feng Wang ◽  
Qianzi Yang ◽  
Yan Li ◽  
...  

Abstract Background: Mechanism of sevoflurane preconditioning–induced cerebral ischemic tolerance is unclear. This study investigates the role of N-myc downstream–regulated gene-2 (NDRG2) in the neuroprotection of sevoflurane preconditioning in ischemic model both in vivo and in vitro. Methods: At 2 h after sevoflurane (2%) preconditioning for 1 h, rats were subjected to middle cerebral artery occlusion for 120 min. Neurobehavioral scores (n = 10), infarct volumes (n = 10), cellular apoptosis (n = 6), and NDRG2 expression (n = 6) were determined at 24 h after reperfusion. In vitro, cultural astrocytes were exposed to oxygen–glucose deprivation for 4 h. Cellular viability, cytotoxicity, apoptosis, and NDRG2 expression (n = 6) were evaluated in the presence or absence of NDRG2-specific small interfering RNA or NDRG2 overexpression plasmid. Results: Sevoflurane preconditioning decreased apoptosis (terminal deoxynucleotidyl transferase–mediated 2’-deoxyuridine 5’-triphosphate nick-end labeling–positive cells reduced to 31.2 ± 5.3% and cleaved Caspase-3 reduced to 1.42 ± 0.21 fold) and inhibited NDRG2 expression (1.28 ± 0.15 fold) and nuclear translocation (2.21 ± 0.29 fold) in ischemic penumbra. Similar effects were observed in cultural astrocytes exposed to oxygen–glucose deprivation. NDRG2 knockdown by small interfering RNA attenuated oxygen–glucose deprivation–induced injury (cell viability increased to 80.5 ± 4.1%; lactate dehydrogenase release reduced to 30.5 ± 4.0%) and cellular apoptosis (cleaved Caspase-3 reduced to 1.55 ± 0.21 fold; terminal deoxynucleotidyl transferase–mediated 2’-deoxyuridine 5’-triphosphate nick-end labeling–positive cells reduced to 18.2 ± 4.3%), whereas NDRG2 overexpression reversed the protective effects of sevoflurane preconditioning. All the data are presented as mean ± SD. Conclusion: Sevoflurane preconditioning inhibits NDRG2 up-regulation and nuclear translocation in astrocytes to induce cerebral ischemic tolerance via antiapoptosis, which represents one new mechanism of sevoflurane preconditioning and provides a novel target for neuroprotection.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 122 ◽  
Author(s):  
Xiu He ◽  
Shi Chen ◽  
Chao Li ◽  
Jiaqi Ban ◽  
Yungeng Wei ◽  
...  

Silicosis is an occupational lung disease characterized by persistent inflammation and irreversible fibrosis. Crystalline silica (CS) particles are mainly phagocytized by alveolar macrophages (AMs), which trigger apoptosis, inflammation, and pulmonary fibrosis. Previously, we found that autophagy-lysosomal system dysfunction in AMs was involved in CS-induced inflammation and fibrosis. Induction of autophagy and lysosomal biogenesis by transcription factor EB (TFEB) nuclear translocation can rescue fibrotic diseases. However, the role of TFEB in silicosis is unknown. In this study, we found that CS induced TFEB nuclear localization and increased TFEB expression in macrophages both in vivo and in vitro. However, TFEB overexpression or treatment with the TFEB activator trehalose (Tre) alleviated lysosomal dysfunction and enhanced autophagic flux. It also reduced apoptosis, inflammatory cytokine levels, and fibrosis. Both pharmacologically inhibition of autophagy and TFEB knockdown in macrophages significantly abolished the antiapoptotic and anti-inflammatory effects elicited by either TFEB overexpression or Tre treatment. In conclusion, these results uncover a protective role of TFEB-mediated autophagy in silicosis. Our study suggests that restoration of autophagy-lysosomal function by Tre-induced TFEB activation may be a novel strategy for the treatment of silicosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Marlon Perera ◽  
Joseph Ischia ◽  
Damien Bolton ◽  
Arthur Shulkes ◽  
Graham S. Baldwin ◽  
...  

Introduction & Objectives. Contrast media (CM) causes renal injury through both direct cellular injury (cytotoxicity) and regional vascular changes (renal hypoxia) mediated by reactive oxygen species (ROS). Zinc may be able to provide protection against CM-induced cytotoxicity due to its indirect antioxidant properties and subsequent effect on ROS. We aimed to determine the protective role of zinc preconditioning against contrast-induced renal injury in vitro. Methods. Normal human proximal renal kidney cells (HK-2) were preconditioned with either increasing doses of ZnCl2 or control. Following this preconditioning, cells were exposed to increasing concentrations of Iohexol 300 mg I2/ml for four hours. Key outcome measures included cell survival (MTT colorimetric assay) and ROS generation (H2DCFDA fluorescence assay). Results. Contrast media induced a dose-dependent reduction in survival of HK-2 cells. Compared to control, contrast media at 150, 225, and 300 mg I2/ml resulted in 69.5% (SD 8.8%), 37.3% (SD 4.8%), and 4.8% (SD 6.6%) cell survival, respectively ( p < 0.001 ). Preconditioning with 37.5 μM and 50 μM ZnCl2 increased cell survival by 173% (SD 27.8%) ( p < 0.001 ) and 219% (SD 32.2%) ( p < 0.001 ), respectively, compared to control preconditioning. Zinc preconditioning resulted in a reduction of ROS generation. Zinc pre-conditioning with 37.5 μM μM ZnCl2 reduced ROS generation by 46% ( p < 0.001 ) compared to control pre-conditioning. Conclusions. Zinc preconditioning reduces oxidative stress following exposure to radiographic contrast media which in turn results in increased survival of renal cells. Translation of this in vitro finding in animal models will lay the foundation for future use of zinc preconditioning against contrast induced nephropathy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Wang ◽  
Li Wang ◽  
Yi Zhang ◽  
Jian Sun ◽  
Yilin Xie ◽  
...  

Autophagic dysfunction is one of the main mechanisms by which the environmental pollutant cadmium (Cd) induces cell injury. Puerarin (Pue, a monomeric Chinese herbal medicine extract) has been reported to alleviate Cd-induced cell injury by regulating autophagy pathways; however, its detailed mechanisms are unclear. In the present study, to investigate the detailed mechanisms by which Pue targets autophagy to alleviate Cd hepatotoxicity, alpha mouse liver 12 (AML12) cells were used to construct a model of Cd-induced hepatocyte injury in vitro. First, the protective effect of Pue on Cd-induced cell injury was confirmed by changes in cell proliferation, cell morphology, and cell ultrastructure. Next, we found that Pue activated autophagy and mitigated Cd-induced autophagy blockade. In this process, the lysosome was further activated and the lysosomal degradation capacity was strengthened. We also found that Pue restored the autophagosome-lysosome fusion and the expression of Rab7 in Cd-exposed hepatocytes. However, the fusion of autophagosomes with lysosomes and autophagic flux were inhibited after knocking down Rab7, and were further inhibited after combined treatment with Cd. In addition, after knocking down Rab7, the protective effects of Pue on restoring autophagosome-lysosome fusion and alleviating autophagy blockade in Cd-exposed cells were inhibited. In conclusion, Pue-mediated alleviation of Cd-induced hepatocyte injury was related to the activation of autophagy and the alleviation of autophagy blockade. Pue also restored the fusion of autophagosomes and lysosomes by restoring the protein expression of Rab7, thereby alleviating Cd-induced autophagy blockade in hepatocytes.


2013 ◽  
Vol 41 (05) ◽  
pp. 1125-1136 ◽  
Author(s):  
Wei-Syun Hu ◽  
Yueh-Min Lin ◽  
Tsung-Jung Ho ◽  
Ray-Jade Chen ◽  
Yi-Hui Li ◽  
...  

Heart disease (HD) is associated with estrogen and therefore gender and menopausal status. In addition, clinical evidence shows that increased serum norepinephrine is found in patients with HD. Therefore, this study aimed to investigate the cardio-protective effect of genistein, a selective estrogen receptor modulator (SERM) from soy bean extract, in H9c2 cardiomyoblast cells treated with isoproterenol (ISO), a norepinephrine analog. In this in vitro model, image data and results from western blotting shown that ISO treatment was capable of inducing cellular apoptosis, especially the mitochondrial dependent pathway. Treatment of genistein could suppress the expression of mitochondrial pro-apoptotic proteins including Bad, caspase-8, caspase-9, and caspase-3 in H9c2 treated with ISO. By contrast, several survival proteins were expressed in H9c2 treated with genistein, such as phosphor (p)-Akt, p-Bad, and p-Erk1/2. Furthermore, we confirmed that the protective role of genistein was partially mediated through the expression of Erk1/2, Akt, and NF κ B proteins by adding several pathway inhibitors. These in vitro data suggest that genistein may be a safe and natural SERM alternative to hormone therapy in cardio-protection.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Dinggui Lu ◽  
Jihua Wei ◽  
Jian Chen ◽  
Jingjie Zhao ◽  
Jiajia Wang ◽  
...  

Osteoarthritis (OA) is a degenerative disease characterized by articular cartilage and/or chondrocyte destruction, and although it has long been considered as a primary disease, the importance of meniscus endothelial cell modulation in the subchondral microenvironment has recently drawn attention. Previous studies have shown that apelin could potentially inhibit cellular apoptosis; however, it remains unclear whether apelin could play a protective role in protecting the endothelium in the OA meniscus. In this study, with the advantages of single-cell RNA sequencing (scRNA-seq) data, in combination with flow cytometry, we identified two endothelial subclusters in the meniscus, featured by high expression of Homeobox A13 (HOXA13) and Ras Protein-Specific Guanine Nucleotide Releasing Factor 2 (RASGRF2), respectively. Compared with control patients, both subclusters decreased in absolute cell numbers and exhibited downregulated APJ endogenous ligand (APLN, coding for apelin) and upregulated apelin receptor (APLNR, coding apelin receptor). Furthermore, we confirmed that in OA, decreased endothelial cell numbers, including both subclusters, were related to intrinsic apoptosis factors: one more relevant to caspase 3 (CASP3) and the other to BH3-Interacting Domain Death agonist (BID). In vitro culturing of meniscal endothelial cells purified from patients proved that apelin could significantly inhibit apoptosis by downregulating these two factors in endothelial cell subclusters, suggesting that apelin could potentially serve as a therapeutic target for patients with OA.


Sign in / Sign up

Export Citation Format

Share Document