Yq Microdeletion in a Patient with VACTERL Association and Shawl Scrotum with Bifid Scrotum: A Real Pathogenetic Association or a Coincidence?

2019 ◽  
Vol 158 (3) ◽  
pp. 121-125
Author(s):  
Stefano Tumini ◽  
Melissa Alfonsi ◽  
Silvia Carinci ◽  
Elisena Morizio ◽  
Ivana Antonucci ◽  
...  

VACTERL association is defined by the occurrence of congenital malformations: vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula with esophageal atresia, radial and renal dysplasia, and limb defects. No genetic alterations have been discovered except for some sporadic chromosomal rearrangements and gene mutations. We report a boy with VACTERL association and shawl scrotum with bifid scrotum who presented with a de novo Yq11.223q11.23 microdeletion identified by array CGH. The deletion spans 3.1 Mb and encompasses several genes in the AZFc region, frequently deleted in infertile men with severe oligozoospermia or azoospermia. Herein, we discuss the possible explanation for this unusual genotype-phenotype correlation. We suggest that the deletion of the BPY2 (previously VCY2) gene, located in the AZFc region and involved in spermatogenesis, contributed to the genesis of the phenotype. In fact, BPY2 interacts with a ubiquitin-protein ligase, involved in the SHH pathway which is known to be implicated in the genesis of VACTERL association.

Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 63-65
Author(s):  
Mizuki Ohno

Gene mutations are permanent alterations in sections of DNA sequences called genes. This causes a significant and distinguishable change in the base sequence of the affected DNA. They are changes to the base sequence that can occur spontaneously or in response to cellular damage and can vary greatly in size and position, ranging from a single base pair mutation, to changes that span segments of chromosomes, across several genes. Mutations in somatic (non-reproductive) cells are not passed on to the next generation, however germline mutations can occur in germ line cells that can produce egg and sperm, thus causing changes to the basic genome to become fixed in the DNA for future generations to come. This article focuses on germline mutations that are of particular interest to Ohno and her team. Many of these mutations - so called de novo mutations - are genetic alterations present for the first time in one family member as a result of a variation or mutation in a germ cell in either an egg or sperm of one of the parents. DNA repair systems allow for many of the mutations to be prevented and, in reality, only a low level of them become carried forward in the genome. Ohno and her team recognise the causes of germline mutation and are seeking to understand the implications of mutation, with a view to establishing how they may evolve and the possibilities for our future selves. The current human genome is a result of amassed mutations that have accumulated in our genome and driven it along certain pathways to yield what we are now. Ohno is currently working with gene-modified mice but the work is transferable to any mammalian genome, including humans to determine a possible future pathway.


2017 ◽  
Vol 151 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Živilė Maldžienė ◽  
Eglė Preikšaitienė ◽  
Salomėja Ignotienė ◽  
Natalija Kapitanova ◽  
Algirdas Utkus ◽  
...  

Axenfeld-Rieger syndrome (ARS) is a clinically and genetically heterogeneous group of autosomal dominantly inherited malformations that predominantly affect the eye but are also associated with craniofacial dysmorphism and dental abnormalities. A broad spectrum of genetic alterations involving PITX2 and FOXC1 lead to ARS. We report on a 4-year-old girl with clinical features of ARS and developmental delay due to a de novo apparently balanced pericentric inversion in chromosome 4. This report emphasizes that complementary investigations are necessary to precisely characterize chromosomal rearrangements. Elucidation of the exact genetic cause of ARS is important for comprehensive genetic counseling of the family members and for better patient management.


2018 ◽  
Vol 16 (05) ◽  
pp. 362-368 ◽  
Author(s):  
Federica Sullo ◽  
Agata Polizzi ◽  
Stefano Catanzaro ◽  
Selene Mantegna ◽  
Francesco Lacarrubba ◽  
...  

Cerebellotrigeminal dermal (CTD) dysplasia is a rare neurocutaneous disorder characterized by a triad of symptoms: bilateral parieto-occipital alopecia, facial anesthesia in the trigeminal area, and rhombencephalosynapsis (RES), confirmed by cranial magnetic resonance imaging. CTD dysplasia is also known as Gómez-López-Hernández syndrome. So far, only 35 cases have been described with varying symptomatology. The etiology remains unknown. Either spontaneous dominant mutations or de novo chromosomal rearrangements have been proposed as possible explanations. In addition to its clinical triad of RES, parietal alopecia, and trigeminal anesthesia, CTD dysplasia is associated with a wide range of phenotypic and neurodevelopmental abnormalities.Treatment is symptomatic and includes physical rehabilitation, special education, dental care, and ocular protection against self-induced corneal trauma that causes ulcers and, later, corneal opacification. The prognosis is correlated to the mental development, motor handicap, corneal–facial anesthesia, and visual problems. Follow-up on a large number of patients with CTD dysplasia has never been reported and experience is limited to few cases to date. High degree of suspicion in a child presenting with characteristic alopecia and RES has a great importance in diagnosis of this syndrome.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Marcelo Razera Baruffi ◽  
Deise Helena de Souza ◽  
Rosana Aparecida Bicudo da Silva ◽  
Ester Silveira Ramos ◽  
Danilo Moretti-Ferreira

Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with ade novoX;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed ade novobalanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated withde novobalanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 550
Author(s):  
Matvey Mikhailovich Murashko ◽  
Ekaterina Mikhailovna Stasevich ◽  
Anton Markovich Schwartz ◽  
Dmitriy Vladimirovich Kuprash ◽  
Aksinya Nicolaevna Uvarova ◽  
...  

Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis’s primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4956-4956
Author(s):  
Cheng-Hong Tsai ◽  
Hsin-An Hou ◽  
Wen-Chien Chou ◽  
Chien-Chin Lin ◽  
Chien-Yuan Chen ◽  
...  

Abstract Introduction Risk-stratification of patients with acute myeloid leukemia (AML) can not only improve treatment response, but also reduce side effects of the treatment, especially in the elderly. A number of patient-specific and leukemia-associated factors are related to the poor outcome in older patients with AML. However, comprehensive studies regarding the impact of genetic alterations in this group of patients are limited. Methods and Materials A total of 500 adult patients with newly diagnosed de novo AML who had enough bone marrow cryopreserved cells for analysis at the National Taiwan University Hospital were enrolled consecutively. We compared the clinico-biological features, cytogenetics and molecular gene mutations between patients aged 60 years or older (n=185) and those younger (<60 years, n=315). Result Among older patients, those received standard intensive chemotherapy had a longer overall survival (OS) than those treated with palliative care. Compared with younger patients, the elderly had a higher incidence of poor-risk cytogenetic changes, but a lower frequency of favorable-risk cytogenetics. The median number of molecular gene mutations at diagnosis was higher in the elderly than the younger. Older patients had significantly higher incidences of PTPN11, NPM1, RUNX1, ASXL1, TET2, DNMT3A, and P53 mutations but a lower frequency of WT1 mutations. In multivariate analysis for OS among the elderly who received standard intensive chemotherapy, high WBC >50,000/μL at diagnosis, RUNX1 mutations, DNMT3A mutations, and P53 mutations were independent worse prognostic factors, while the presence of NPM1 mutations in the abcence of FLT3/ITD mutations was an independent good prognostic factor. The frequency of acquiring one or more adverse genetic alterations was much higher in older patients than younger ones. Further, the pattern of gene mutations could divide older patients with intermediate cytogenetics into three groups with significantly different complete remission rates, OS, and disease-free survival. Conclusion Older AML patients frequently harbored high-risk cytogenetics and gene mutations, and had poorer prognosis. Integration of cytogenetics and molecular alterations could risk-stratify older patients into groups with significant different outcomes. For those patients with poor prognosis under current chemotherapy, novel therapies, such as demethylating agents or other targeted therapies may be indicated. Disclosures Tang: Novartis: Consultancy, Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5228-5228
Author(s):  
Genki Yamato ◽  
Hiroki Yamaguchi ◽  
Hiroshi Handa ◽  
Norio Shiba ◽  
Satoshi Wakita ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is a complex disease caused by various genetic alterations. Some prognosis-associated cytogenetic aberrations or gene mutations such as FLT3-internal tandem duplication (ITD), t(8;21)(q22;q22)/RUNX1-RUNX1T1, and inv(16)(p13q22)/CBFB-MYH11 have been found and used to stratify the risk. Numerous gene mutations have been implicated in the pathogenesis of AML, including mutations of DNMT3A, IDH1/2, TET2 and EZH2 in addition to RAS, KIT, NPM1, CEBPA and FLT3in the recent development of massively parallel sequencing technologies. However, even after incorporating these molecular markers, the prognosis is unclear in a subset of AML patients. Recently, NUP98-NSD1 fusion gene was identified as a poor prognostic factor for AML. We have reported that all pediatric AML patients with NUP98-NSD1 fusion showed high expression of the PR domain containing 16 (PRDM16; also known as MEL1) gene, which is a zinc finger transcription factor located near the breakpoint at 1p36. PRDM16 is highly homologous to MDS1/EVI1, which is an alternatively spliced transcript of EVI1. Furthermore, PRDM16 is essential for hematopoietic stem cell maintenance and remarkable as a candidate gene to induce leukemogenesis. Recent reports revealed that high PRDM16 expression was a significant marker to predict poor prognosis in pediatric AML. However, the significance of PRDM16 expression is unclear in adult AML patients. Methods A total of 151 adult AML patients (136 patients with de novo AML and 15 patients with relapsed AML) were analyzed. They were referred to our institution between 2004 and 2015 and our collaborating center between 1996 and 2013. The median length of follow-up for censored patients was 30.6 months. Quantitative RT-PCR analysis was performed using the 7900HT Fast Real Time PCR System with TaqMan Gene Expression Master Mix and TaqMan Gene Expression Assay. In addition to PRDM16, ABL1 was also evaluated as a control gene. We investigated the correlations between PRDM16 gene expression and other genetic alterations, such as FLT3-ITD, NPM1, and DNMT3A, and clarified the prognostic impact of PRDM16 expression in adult AML patients. Mutation analyses were performed by direct sequence analysis, Mutation Biased PCR, and the next-generation sequencer Ion PGM. Results PRDM16 overexpression was identified in 29% (44/151) of adult AML patients. High PRDM16 expression correlated with higher white blood cell counts in peripheral blood and higher blast ratio in bone marrow at diagnosis; higher coincidence of mutation in NPM1 (P = 0.003) and DNMT3A (P = 0.009); and lower coincidence of t(8;21) (P = 0.010), low-risk group (P = 0.008), and mutation in BCOR (P = 0.049). Conversely, there were no significant differences in age at diagnosis and sex distribution. Patients with high PRDM16 expression tended to be low frequency in M2 (P = 0.081) subtype, and the remaining subtype had no significant differences between high and low PRDM16 expression. Remarkably, PRDM16 overexpression patients were frequently observed in non-complete remission (55.8% vs. 26.3%, P = 0.001). Patients with high PRDM16 expression tended to have a cumulative incidence of FLT3-ITD (37% vs. 21%, P = 0.089) and MLL-PTD (15% vs. 5%, P = 0.121). We analyzed the prognosis of 139 patients who were traceable. The overall survival (OS) and median survival time (MST) of patients with high PRDM16 expression were significantly worse than those of patients with low expression (5-year OS, 17% vs. 32%; MST, 287 days vs. 673 days; P = 0.004). This trend was also significant among patients aged <65 years (5-year OS, 25% vs. 48%; MST, 361 days vs. 1565 days, P = 0.013). Moreover, high PRDM16 expression was a significant prognostic factor for FLT3-ITD negative patients aged < 65 years in the intermediate cytogenetic risk group (5-year OS, 29% vs. 58%; MST, 215 days vs. undefined; P = 0.032). Conclusions We investigated the correlations among PRDM16 expression, clinical features, and other genetic alterations to reveal clinical and prognostic significance. High PRDM16 expression was independently associated with non-CR and adverse outcomes in adult AML patients, as well as pediatric AML patients. Our finding indicated that the same pathogenesis may exist in both adult and pediatric AML patients with respect to PRDM16 expression, and measuring PRDM16 expression was a powerful tool to predict the prognosis of adult AML patients. Disclosures Inokuchi: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.


2017 ◽  
Author(s):  
Thomas Blankers ◽  
Kevin P. Oh ◽  
Aureliano Bombarely ◽  
Kerry L. Shaw

ABSTRACTPhenotypic evolution and speciation depend on recombination in many ways. Within populations, recombination can promote adaptation by bringing together favorable mutations and decoupling beneficial and deleterious alleles. As populations diverge, cross-over can give rise to maladapted recombinants and impede or reverse diversification. Suppressed recombination due to genomic rearrangements, modifier alleles, and intrinsic chromosomal properties may offer a shield against maladaptive gene flow eroding co-adapted gene complexes. Both theoretical and empirical results support this relationship. However, little is known about this relationship in the context of behavioral isolation, where co-evolving signals and preferences are the major hybridization barrier. Here we examine the genomic architecture of recently diverged, sexually isolated Hawaiian swordtail crickets (Laupala). We assemble a de novo genome and generate three dense linkage maps from interspecies crosses. In line with expectations based on the species’ recent divergence and successful interbreeding in the lab, the linkage maps are highly collinear and show no evidence for large-scale chromosomal rearrangements. The maps were then used to anchor the assembly to pseudomolecules and estimate recombination rates across the genome. We tested the hypothesis that loci involved in behavioral isolation (song and preference divergence) are in regions of low interspecific recombination. Contrary to our expectations, a genomic region where a male song QTL co-localizes with a female preference QTL was not associated with particularly low recombination rates. This study provides important novel genomic resources for an emerging evolutionary genetics model system and suggests that trait-preference co-evolution is not necessarily facilitated by locally suppressed recombination.


Sign in / Sign up

Export Citation Format

Share Document