IRF9 Affects the TNF-Induced Phenotype of Rheumatoid-Arthritis Fibroblast-Like Synoviocytes via Regulation of the SIRT-1/NF-κB Signaling Pathway

2020 ◽  
Vol 209 (2–3) ◽  
pp. 110-119
Author(s):  
Fan Jiang ◽  
Hong-Yi Zhou ◽  
Li-Fang Zhou ◽  
Wei Zeng ◽  
Li-Han Zhao

<b><i>Objective:</i></b> To discuss how IRF9 affects the fibroblast-like synoviocytes (FLS) in TNF-induced rheumatoid arthritis (RA) via the SIRT-1/NF-κB signaling pathway. <b><i>Methods:</i></b> RA-FLS were isolated and divided into control, sh-IRF9, TNF, TNF + sh-Ctrl, TNF + sh-IRF9, TNF + sh-SIRT1, and TNF + sh-IRF9 + sh-SIRT1 groups. Biological features of FLS were evaluated by MTT, wound healing, and Transwell assays, respectively. Cell apoptosis and cycle were assessed flow cytometrically. Inflammatory cytokines were determined through enzyme-linked immunosorbent assay (ELISA), while IRF9 expression and SIRT1/NF-κB signaling pathway activity were measured by Western blotting. <b><i>Results:</i></b> TNF increased IRF9 expression as well as NF-κB signaling activity and down-regulated SIRT1 of RA-FLS. Silencing IRF9 resulted in up-regulation of SIRT1 and blocked NF-κB signaling, with significant decreases in TNF-induced cell viability, migration, and invasion, prominent enhancement in apoptosis and the proportion of cells in G0/G1 phase, but a decrease in the proportion of cells in S and G2/M phases, and reduced levels of inflammatory cytokines. However, these changes were totally abolished after silencing SIRT1, i.e., the IRF9 shRNA-induced inhibitory effect on the growth of RA-FLS was reversed. <b><i>Conclusion:</i></b> Silencing IRF9 curbs the activity of the NF-κB signaling pathway via up-regulating SIRT-1, to further suppress TNF-induced changes in the malignant features of RA-FLS, and the secretion of inflammatory cytokines, with the promoted apoptosis.

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Yuji Nozaki ◽  
Jinhai Ri ◽  
Kenji Sakai ◽  
Kaoru Niki ◽  
Koji Kinoshita ◽  
...  

Interleukin (IL)-18 expression in synovial tissue correlates with the severity of joint inflammation and the levels of pro-inflammatory cytokines. However, the role of the IL-18/IL-18 receptor-alpha (Rα) signaling pathway in autoimmune arthritis is unknown. Wild-type (WT) and IL-18Rα knockout (KO) mice were immunized with bovine type II collagen before the onset of arthritis induced by lipopolysaccharide injection. Disease activity was evaluated by semiquantitative scoring and histologic assessment. Serum inflammatory cytokine and anticollagen antibody levels were quantified by an enzyme-linked immunosorbent assay. Joint cytokine and matrix metalloproteinases-3 levels were determined by a quantitative polymerase chain reaction. Splenic suppressors of cytokine signaling (SOCS) were determined by Western blot analysis as indices of systemic immunoresponse. IL-18Rα KO mice showed lower arthritis and histological scores in bone erosion and synovitis due to reductions in the infiltration of CD4+ T cells and F4/80+ cells and decreased serum IL-6, -18, TNF, and IFN-γ levels. The mRNA expression and protein levels of SOCS3 were significantly increased in the IL-18Rα KO mice. By an up-regulation of SOCS, pro-inflammatory cytokines were decreased through the IL-18/IL-18Rα signaling pathway. These results suggest that inhibitors of the IL-18/IL-18Rα signaling pathway could become new therapeutic agents for rheumatoid arthritis.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhihuan Luo ◽  
Shaojian Chen ◽  
Xiaguang Chen

Abstract Background Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, and fibroblast-like synoviocytes (FLSs) are key effector cells in RA development. Mounting evidence indicates that circular RNAs (circRNAs) participate in the occurrence and development of RA. However, the precise mechanism of circRNA mitogen-activated protein kinase (circMAPK9) in the cell processes of FLSs has not been reported. Methods The expression levels of circMAPK9, microRNA-140-3p (miR-140-3p), and protein phosphatase magnesium-dependent 1A (PPM1A) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cell migration and invasion were tested by transwell assay. All the proteins were inspected by western blot assay. Inflammatory response was evaluated by enzyme-linked immunosorbent assay (ELISA). The interaction between miR-140-3p and circMAPK9 or PPM1A was verified by dual-luciferase reporter assay. Results CircMAPK9 and PPM1A were upregulated and miR-140-3p was downregulated in RA patients and FLSs from RA patients (RA-FLSs). CircMAPK9 silence suppressed cell proliferation, migration, invasion, inflammatory response, and promoted apoptosis in RA-FLSs. MiR-140-3p was a target of circMAPK9, and miR-140-3p downregulation attenuated the effects of circMAPK9 knockdown on cell progression and inflammatory response in RA-FLSs. PPM1A was targeted by miR-140-3p, and circMAPK9 could regulate PPM1A expression by sponging miR-140-3p. Furthermore, miR-140-3p could impede cell biological behaviors in RA-FLSs via targeting PPM1A. Conclusion CircMAPK9 knockdown might inhibit cell proliferation, migration, invasion, inflammatory response, and facilitate apoptosis in RA-FLSs via regulating miR-140-3p/PPM1A axis, offering a new mechanism for the comprehension of RA development and a new insight into the potential application of circMAPK9 in RA treatment.


2020 ◽  
Vol 21 (8) ◽  
pp. 734-740 ◽  
Author(s):  
Shou-di He ◽  
Ning Tan ◽  
Chen-xia Sun ◽  
Kang-han Liao ◽  
Hui-jun Zhu ◽  
...  

Background: Melittin, the major medicinal component of honeybee venom, exerts antiinflammatory, analgesic, and anti-arthritic effects in patients with Rheumatoid Arthritis (RA). RA is an inflammatory autoimmune joint disease that leads to irreversible joint destruction and functional loss. Fibroblast-Like Synoviocytes (FLS) are dominant, special mesenchymal cells characterized by the structure of the synovial intima, playing a crucial role in both the initiation and progression of RA. Objective: In this study, we evaluated the effects of melittin on the viability and apoptosis of FLS isolated from patients with RA. Methods: Cell viability was determined using CCK-8 assays; apoptosis was evaluated by flow cytometry, and the expression levels of apoptosis-related proteins (caspase-3, caspase-9, BAX, and Bcl-2) were also determined. To explore whether melittin alters inflammatory processes in RA-FLS, IL-1β levels were determined using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we performed GFP-LC3 punctate fluorescence dot assays and western blotting (for LC3, ATG5, p62, and Beclin 1) to assess autophagy in RA-FLS. Results: Our results show that melittin can significantly impair viability, promote apoptosis and autophagy, and inhibit IL-1β secretion in RA-FLS. Conclusion: Melittin may be useful in preventing damage to the joints during accidental local stimulation.


Sign in / Sign up

Export Citation Format

Share Document