scholarly journals Vascular Permeability: Regulation Pathways and Role in Kidney Diseases

Nephron ◽  
2021 ◽  
pp. 1-14
Author(s):  
Anxiang Cai ◽  
Christos Chatziantoniou ◽  
Amélie Calmont

Background: Vascular permeability (VP) is a fundamental aspect of vascular biology. A growing number of studies have revealed that many signalling pathways govern VP in both physiological and pathophysiological conditions. Furthermore, emerging evidence identifies VP alteration as a pivotal pathogenic factor in acute kidney injury, chronic kidney disease, diabetic kidney disease, and other proteinuric diseases. Therefore, perceiving the connections between these pathways and the aetiology of kidney disease is an important task as such knowledge may trigger the development of novel therapeutic or preventive medical approaches. In this regard, the discussion summarizing VP-regulating pathways and associating them with kidney diseases is highly warranted. Summary: Major pathways of VP regulation comprise angiogenic factors including vascular endothelial growth factor/VEGFR, angiopoietin/Tie, and class 3 semaphorin/neuropilin and inflammatory factors including histamine, platelet-activating factor, and leukocyte extravasation. These pathways mainly act on vascular endothelial cadherin to modulate adherens junctions of endothelial cells (ECs), thereby augmenting VP via the paracellular pathway. Elevated VP in diverse kidney diseases involves EC apoptosis, imbalanced regulatory factors, and many other pathophysiological events, which in turn exacerbates renal structural and functional disorders. Measures improving VP effectively ameliorate the diseased kidney in terms of tissue injury, endothelial dysfunction, kidney function, and long-term prognosis. Key Messages: (1) Angiogenic factors, inflammatory factors, and adhesion molecules represent major pathways that regulate VP. (2) Vascular hyperpermeability links various pathophysiological processes and plays detrimental roles in multiple kidney diseases.

Physiology ◽  
2015 ◽  
Vol 30 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Qi Cao ◽  
David C. H. Harris ◽  
Yiping Wang

Macrophages are found in normal kidney and in increased numbers in diseased kidney, where they act as key players in renal injury, inflammation, and fibrosis. Macrophages are highly heterogeneous cells and exhibit distinct phenotypic and functional characteristics in response to various stimuli in the local microenvironment in different types of kidney disease. In kidney tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce pro-inflammatory macrophages, which contribute to further tissue injury, inflammation, and subsequent fibrosis. Apoptotic cells and anti-inflammatory factors in post-inflammatory tissues induced anti-inflammatory macrophages, which can mediate kidney repair and regeneration. This review summarizes the role of macrophages with different phenotypes in kidney injury, inflammation, and fibrosis in various acute and chronic kidney diseases. Understanding alterations of kidney microenvironment and the factors that control the phenotype and functions of macrophages may offer an avenue for the development of new cellular and cytokine/growth factor-based therapies as alternative treatment options for patients with kidney disease.


2021 ◽  
Vol 22 (14) ◽  
pp. 7642
Author(s):  
Zoran V. Popovic ◽  
Felix Bestvater ◽  
Damir Krunic ◽  
Bernhard K. Krämer ◽  
Raoul Bergner ◽  
...  

The CD73 pathway is an important anti-inflammatory mechanism in various disease settings. Observations in mouse models suggested that CD73 might have a protective role in kidney damage; however, no direct evidence of its role in human kidney disease has been described to date. Here, we hypothesized that podocyte injury in human kidney diseases alters CD73 expression that may facilitate the diagnosis of podocytopathies. We assessed the expression of CD73 and one of its functionally important targets, the C-C chemokine receptor type 2 (CCR2), in podocytes from kidney biopsies of 39 patients with podocytopathy (including focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), membranous glomerulonephritis (MGN) and amyloidosis) and a control group. Podocyte CD73 expression in each of the disease groups was significantly increased in comparison to controls (p < 0.001–p < 0.0001). Moreover, there was a marked negative correlation between CD73 and CCR2 expression, as confirmed by immunohistochemistry and immunofluorescence (Pearson r = −0.5068, p = 0.0031; Pearson r = −0.4705, p = 0.0313, respectively), thus suggesting a protective role of CD73 in kidney injury. Finally, we identify CD73 as a novel potential diagnostic marker of human podocytopathies, particularly of MCD that has been notorious for the lack of pathological features recognizable by light microscopy and immunohistochemistry.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jianwen Yu ◽  
Danli Xie ◽  
Naya Huang ◽  
Qin Zhou

Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have aroused growing attention in this decade. They are widely expressed in eukaryotes and generally have high stability owing to their special closed-loop structure. Many circRNAs are abundant, evolutionarily conserved, and exhibit cell-type-specific and tissue-specific expression patterns. Mounting evidence suggests that circRNAs have regulatory potency for gene expression by acting as microRNA sponges, interacting with proteins, regulating transcription, or directly undergoing translation. Dysregulated expression of circRNAs were found in many pathological conditions and contribute to the pathogenesis and progression of various disorders, including renal diseases. Recent studies have revealed that circRNAs may serve as novel reliable biomarkers for the diagnosis and prognosis prediction of multiple kidney diseases, such as renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), and other glomerular diseases. Furthermore, circRNAs expressed by intrinsic kidney cells are shown to play a substantial role in kidney injury, mostly reported in DKD and RCC. Herein, we review the biogenesis and biological functions of circRNAs, and summarize their roles as promising biomarkers and therapeutic targets in common kidney diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mingxuan Chi ◽  
Kuai Ma ◽  
Jing Wang ◽  
Zhaolun Ding ◽  
Yunlong Li ◽  
...  

The human gut microbiota is a complex cluster composed of 100 trillion microorganisms, which holds a symbiotic relationship with the host under normal circumstances. Intestinal flora can facilitate the treatment of human metabolic dysfunctions and interact with the intestinal tract, which could influence intestinal tolerance, immunity, and sensitivity to inflammation. In recent years, significant interests have evolved on the association of intestinal microbiota and kidney diseases within the academic circle. Abnormal changes in intestinal microbiota, known as dysbiosis, can affect the integrity of the intestinal barrier, resulting in the bacterial translocation, production, and accumulation of dysbiotic gut-derived metabolites, such as urea, indoxyl sulfate (IS), and p-cresyl sulfate (PCS). These processes lead to the abnormal activation of immune cells; overproduction of antibodies, immune complexes, and inflammatory factors; and inflammatory cell infiltration that can directly or indirectly cause damage to the renal parenchyma. The aim of this review is to summarize the role of intestinal flora in the development and progression of several renal diseases, such as lupus nephritis, chronic kidney disease, diabetic nephropathy, and renal ischemia-reperfusion injury. Further research on these mechanisms should provide insights into the therapeutic potential of regulating intestinal flora and intervening related molecular targets for the abovementioned nephropathy.


2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Flávia Silveira ◽  
Káthia Zuntini ◽  
Márcia Silveira ◽  
Lohanna Tavares ◽  
Juliana Mendes ◽  
...  

OBJECTIVES: This study aims to present the confirmed cases of SARS-CoV-2 infection in pediatric patients with chronic and acute kidney diseases admitted to a tertiary pediatric hospital. METHODS: Descriptive and retrospective observational study with all children hospitalized between March and June 2020 who had, simultaneously, SARS-CoV-2 infection and renal pathologies. Of this total of patients, those who had another underlying disease besides the renal disease were excluded. RESULTS: During the period, nine children with kidney disease were admitted to the hospital and had infection confirmed by the new coronavirus through positive RT-PCR. Regarding the underlying disease, seven had only kidney disease, three of whom had stage 5 chronic kidney disease; one, with stage 1 chronic kidney disease; one, with cortic-sensitive nephrotic syndrome; and two, with acute kidney injury. Two patients in this study had already undergone kidney transplantation, used immunosuppressants and had their doses reduced due to the infectious condition. Only one required oxygen therapy and transfer to the intensive care unit, but was not intubated and returned to the ward within 24 hours. CONCLUSIONS: According to the cases described, the pediatric population with kidney disease, including those using immunosuppressants due to acute transplant rejection, seems to evolve without severe COVID-19, therefore there is no great divergence in relation to the population of the same healthy age group.


2020 ◽  
Vol 245 (10) ◽  
pp. 902-910
Author(s):  
Binbin Pan ◽  
Guoping Fan

Kidney dysfunction, including chronic kidney disease and acute kidney injury, is a globally prevalent health problem. However, treatment regimens are still lacking, especially for conditions involving kidney fibrosis. Stem cells hold great promise in the treatment of chronic kidney disease and acute kidney injury, but success has been hampered by insufficient incorporation of the stem cells in the injured kidney. Thus, new approaches for the restoration of kidney function after acute or chronic injury have been explored. Recently, kidney organoids have emerged as a useful tool in the treatment of kidney diseases. In this review, we discuss the mechanisms and approaches of cell therapy in acute kidney injury and chronic kidney disease, including diabetic kidney disease and lupus nephritis. We also summarize the potential applications of kidney organoids in the treatment of kidney diseases. Impact statement Stem cells hold great promise in regenerative medicine. Pluripotent stem cells have been differentiated into kidney organoids to understand human kidney development and to dissect renal disease mechanisms. Meanwhile, recent studies have explored the treatment of kidney diseases using a variety of cells, including mesenchymal stem cells and renal derivatives. This mini-review discusses the diverse mechanisms underlying current renal disease treatment via stem cell therapy. We postulate that clinical applications of stem cell therapy for kidney diseases can be readily achieved in the near future.


Author(s):  
SHAREEF J. ◽  
SRIDHAR S. B. ◽  
SHARIFF A.

Proton pump inhibitors (PPIs) are most widely used medications for acid related gastrointestinal disorders. Accessible evidence based studies suggest that the increased use of PPI is linked to a greater risk of developing kidney diseases. This review aims to determine the association of kidney disease with the use of proton pump inhibitor with various study designs. PubMed, Scopus and Google Scholar databases as well as a reference list of relevant articles were systematically searched for studies by using the following search terms; ‘proton pump inhibitors’, ‘acute kidney injury’, ‘chronic kidney disease’ and ‘end stage renal disease’. Both observational and randomized controlled trials (RCTs) exploring the association of PPI use with kidney disease were eligible for inclusion. A total of 8 articles, including 9 studies (n = 794,349 participants) were identified and included in the review. Majority of the studies showed a higher risk of kidney outcomes in patients taking PPIs, with effect higher of acute kidney injury (4-to 6-fold) compared with chronic kidney disease and end stage renal disease (1.5-to 2.5-fold). However, the studies suggest that the strength of evidence is weak and could not prove causation. The risk increased considerably with the use of high dose of PPIs and prolonged duration of exposure necessitates the monitoring of renal function. Exercising vigilance in PPI use and cessation of proton pump inhibitor when there is no clear indication may be a reasonable approach to reduce the population burden of kidney diseases.


Author(s):  
Ching-Wei Tsai ◽  
Sanjeev Noel ◽  
Hamid Rabb

Acute kidney injury (AKI), regardless of its aetiology, can elicit persistent or permanent kidney tissue changes that are associated with progression to end-stage renal disease and a greater risk of chronic kidney disease (CKD). In other cases, AKI may result in complete repair and restoration of normal kidney function. The pathophysiological mechanisms of renal injury and repair include vascular, tubular, and inflammatory factors. The initial injury phase is characterized by rarefaction of peritubular vessels and engagement of the immune response via Toll-like receptor binding, activation of macrophages, dendritic cells, natural killer cells, and T and B lymphocytes. During the recovery phase, cell adhesion molecules as well as cytokines and chemokines may be instrumental by directing the migration, differentiation, and proliferation of renal epithelial cells; recent data also suggest a critical role of M2 macrophage and regulatory T cell in the recovery period. Other processes contributing to renal regeneration include renal stem cells and the expression of growth hormones and trophic factors. Subtle deviations in the normal repair process can lead to maladaptive fibrotic kidney disease. Further elucidation of these mechanisms will help discover new therapeutic interventions aimed at limiting the extent of AKI and halting its progression to CKD or ESRD.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Gennadii Fomenko

Abstract Background and Aims The creation of vascular access: has it anything to do with a nephrologist ? At first glance, the concept of vascular access is the responsibility of surgical specialists. However, a nephrologist has started executing some of the common intensive treatment methods, using the equipment and techniques, specific to the field of dialysis. In this case, a nephrology specialist sets up different kinds of vascular access, namely the AV (arteriovenous) fistula, the AV graft, and the venous catheter; he/she is, therefore, responsible for its assessment and congruent correction. Method the usage of statistical data, gathered by the medical specialists of the dialysis unit of the Regional Chernihiv Hospital; the analysis of the possible nephrologist’s contribution to the creation of vascular access in patients with kidney diseases. Results During 2017-2019, 332 catheterizations were performed, during each of them vascular access was established: Conclusion 1. A nephrologist, in collaboration with a vascular surgeon, is particularly interested in the creation of vascular access in a patient with chronic kidney disease at the pre-dialysis stage; 2. In most cases, a nephrologist can set up temporary or permanent vascular access in patients with chronic kidney disease or acute kidney injury, which improves the quality of hemodialysis by making him an active participant of the treatment process.


2021 ◽  
Vol 11 (8) ◽  
pp. 820
Author(s):  
Mengyuan Ge ◽  
Sandra Merscher ◽  
Alessia Fornoni

Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of “fatty kidney disease” and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.


Sign in / Sign up

Export Citation Format

Share Document