scholarly journals A Comprehensive Review: Molecular and Genetic Background of Indirect Inguinal Hernias

2021 ◽  
pp. 1-9
Author(s):  
Salih Somuncu ◽  
Özge Sezin Somuncu

<b><i>Background:</i></b> The occurrence of indirect inguinal hernias (IIH) is 5 times more prevalent than that of direct inguinal hernias (IH) and it is 7 times more common in males, owing to the attendance of the processus vaginalis (PV) throughout testicular descent. <b><i>Summary:</i></b> In children, the immense mainstream of IH is indirect. The progress of IIH development in children is instigated with a patent PV, which is mostly treated by simple herniorrhaphy. Syndromes of the collagen, microfibril, elastin, and glycosaminoglycan constituents of the extracellular matrix may attend to the development of IH. Our recent research showed that the lack of epithelial-mesenchymal transition (EMT) in children contributes to the development of IIH, while the scenario is defined as the opposite in adults. However, there is still a lack of knowledge on all of the genetic and molecular causes of the disease. <b><i>Key Messages:</i></b> Here we aimed to review the published genetic background of IH, the deficiencies of connective tissue causing the disease, recently defined molecular pathways involved including EMT, and possible recurrence reasons. This comprehensive study can deliver an analytic outline aiding to define patients with IH combined with fundamental genetic diseases.

PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e113700 ◽  
Author(s):  
Betina Katz ◽  
Sabrina T. Reis ◽  
Nayara I. Viana ◽  
Denis R. Morais ◽  
Caio M. Moura ◽  
...  

Author(s):  
Guillermo Valdivia ◽  
Ángela Alonso-Diez ◽  
Dolores Pérez-Alenza ◽  
Laura Peña

Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical–pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial–mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 893
Author(s):  
Jingjing Sha ◽  
Yunpeng Bai ◽  
Huy Xuan Ngo ◽  
Tatsuo Okui ◽  
Takahiro Kanno

The increasing incidence of resistance to chemotherapeutic agents has become a major issue in the treatment of oral cancer (OC). Epithelial-mesenchymal transition (EMT) has attracted a great deal of attention in recent years with regard to its relation to the mechanism of chemotherapy drug resistance. EMT-activating transcription factors (EMT-ATFs), such as Snail, TWIST, and ZEB, can activate several different molecular pathways, e.g., PI3K/AKT, NF-κB, and TGF-β. In contrast, the activated oncological signal pathways provide reciprocal feedback that affects the expression of EMT-ATFs, resulting in a peritumoral extracellular environment conducive to cancer cell survival and evasion of the immune system, leading to resistance to multiple chemotherapeutic agents. We present an overview of evidence-based chemotherapy for OC treatment based on the National Comprehensive Cancer Network (NCCN) Chemotherapy Order Templates. We focus on the molecular pathways involved in drug resistance related to the EMT and highlight the signal pathways and transcription factors that may be important for EMT-regulated drug resistance. Rapid progress in antitumor regimens, together with the application of powerful techniques such as high-throughput screening and microRNA technology, will facilitate the development of therapeutic strategies to augment chemotherapy.


2020 ◽  
Vol 21 (11) ◽  
pp. 4002 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Ali Zarrabi ◽  
Kiavash Hushmandi ◽  
Mahshad Kalantari ◽  
Reza Mohammadinejad ◽  
...  

Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial–mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell–cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.


2017 ◽  
Vol 5 (14) ◽  
pp. 2588-2600 ◽  
Author(s):  
Ryota Domura ◽  
Rie Sasaki ◽  
Masami Okamoto ◽  
Minoru Hirano ◽  
Katsunori Kohda ◽  
...  

Aligned fibers substrates caused elongation and alignment of the MDA-MB-231 cells along the fiber directionsviareducing the cell roundness and E-cadherin expression.


Sign in / Sign up

Export Citation Format

Share Document