Cariogenic Potential of Human and Bovine Milk on Enamel Demineralization

2021 ◽  
pp. 1-8
Author(s):  
Antonio P. Ricomini Filho ◽  
Ana Camila M. de Assis ◽  
Bárbara E. Costa Oliveira ◽  
Jaime A. Cury

The higher cariogenicity of human milk when compared with bovine milk is still a debatable subject. Therefore, we evaluated the effect of human or bovine milk exposure on biofilm composition and enamel demineralization using a validated cariogenic biofilm model. <i>Streptococcus mutans</i> UA159 biofilms (<i>n</i> = 8) were grown on human saliva-coated bovine enamel slabs of known surface hardness. The biofilms were exposed 8×/day to 0.9% NaCl (negative control), human milk, bovine milk, 7.0% lactose (active human milk control), 4.5% lactose (active bovine milk control), or 10% sucrose (positive control). The culture medium was changed twice daily, and the pH was analyzed as an indicator of biofilm acidogenicity. After 120 h of growth, biofilms were harvested to evaluate viable cells, and soluble and insoluble extracellular polysaccharides (EPS). Enamel demineralization was assessed by the percentage of surface hardness loss (%SHL). Data were analyzed by one-way ANOVA/Tukey’s test (α = 5%). In terms of %SHL, negative control (7.7 ± 3.1), human milk control (13.3 ± 7.5), bovine milk control (15.3 ± 8.2), human milk (7.5 ± 5.0), and bovine milk (8.7 ± 6.3) did not differ among them (<i>p</i> &#x3e; 0.05) but differed (<i>p</i> &#x3c; 0.05) from sucrose (55.1 ± 5.4). The findings of enamel demineralization (%SHL) were statistically supported by the data of biofilm acidogenicity, bacterial counts and EPS biofilm composition. This experimental study suggests that human and bovine milk have low cariogenic potential to provoke caries lesions in enamel.

2019 ◽  
Vol 53 (5) ◽  
pp. 576-583 ◽  
Author(s):  
Daiana Moreli Soares dos Santos ◽  
Juliana Gonçalves Pires ◽  
Aline Braga Silva ◽  
Priscila Maria Aranda Salomão ◽  
Marília Afonso Rabelo Buzalaf ◽  
...  

This study evaluated the effect of titanium tetrafluoride (TiF4) varnish on the development of dentin carious lesions. Bovine root dentin samples were treated for 6 h with: (A) 4% TiF4 varnish (2.45% F); (B) 5.42% sodium fluoride (NaF) varnish (2.45% F); (C) 2% chlorhexidine (CHX) gel – positive control; (D) placebo varnish; or (E) untreated – negative control (n = 4 × biological triplicate, n = 12). Treated dentin samples were exposed to human saliva mixed with McBain saliva (1:50) for the first 8 h in 24-well plates. Thereafter, the medium was removed, and McBain saliva containing 0.2% sucrose was applied for 16 h. From days 2 to 5, McBain saliva with sucrose was replaced daily (37°C, 5% CO2). The demineralization was measured using transverse microradiography, while the effect on biofilm was analyzed using viability, extracellular polysaccharide (EPS), and lactic acid production assays. The data were statistically analyzed (p < 0.05). All treatments (fluorides and CHX) significantly reduced the biofilm viability compared to placebo varnish and negative control. However, none of them was able to reduce the colony-forming unit counting for total microorganism, total streptococci, and Streptococcus mutans. NaF significantly reduced the number of Lactobacillus sp. compared to negative control. No effect was seen on lactic acid production neither on EPS synthesis, except that CHX significantly reduced the amount of insoluble EPS. Both fluorides were able to reduce dentin demineralization compared to placebo varnish and negative control; TiF4 had a better effect in reducing mineral loss and lesion depth than NaF. Therefore, TiF4 varnish has the best protective effect on dentin carious lesion formation using this model.


2016 ◽  
Vol 27 (3) ◽  
pp. 298-302 ◽  
Author(s):  
Adriana de Cássia Ortiz ◽  
Livia Maria Andaló Tenuta ◽  
Cínthia Pereira Machado Tabchoury ◽  
Jaime Aparecido Cury

Abstract Low-fluoride (F) dentifrices (<600 µg F/g) are widely available worldwide, but evidence to recommend the use of such dentifrices, with either regular or improved formulations, is still lacking. Therefore, the aim of this study was to evaluate the anticaries potential of low-F dentifrices found in the Brazilian market, using a validated and tested pH-cycling model. Enamel blocks were selected by surface hardness (SH) and randomized into four treatment groups (n=12): non-F dentifrice (negative control), low-F dentifrice (500 μg F/g), low-F acidulated dentifrice (550 μg F/g) and 1,100 μg F/g dentifrice (positive control). The blocks were subjected to pH-cycling regimen for 8 days and were treated 2x/day with dentifrice slurries prepared in water (1:3, w/v). The pH of the slurries was checked, and only the acidulated one had low pH. After the pH cycling, SH was again determined and the percentage of surface hardness loss was calculated as indicator of demineralization. Loosely- and firmly-bound F concentrations in enamel were also determined. The 1,100 μg F/g dentifrice was more effective than the low-F ones to reduce enamel demineralization and was the only one that differed from the non-F (p<0.05). All F dentifrices formed higher concentration of loosely-bound F on enamel than the non-F (p<0.05), but the 1,100 μg F/g was the only one that differed from the non-F in the ability to form firmly-bound F. The findings suggest that the low-F dentifrices available in the Brazilian market, irrespective of their formulation, do not have anticaries potential.


2013 ◽  
Vol 24 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Fernanda Lourenção Brighenti ◽  
Eliana Mitsue Takeshita ◽  
Camila de Oliveira Sant'ana ◽  
Marília Afonso Rabelo Buzalaf ◽  
Alberto Carlos Botazzo Delbem

This study evaluated the capacity of fluoride acidic dentifrices (pH 4.5) to promote enamel remineralization using a pH cycling model, comparing them with a standard dentifrice (1,100 µgF/g). Enamel blocks had their surface polished and surface hardness determined (SH). Next, they were submitted to subsurface enamel demineralization and to post-demineralization surface hardness analysis. The blocks were divided into 6 experimental groups (n=10): placebo (without F, pH 4.5, negative control), 275, 412, 550, 1,100 µgF/g and a standard dentifrice (positive control). The blocks were submitted to pH cycling for 6 days and treatment with dentifrice slurries twice a day. After pH cycling, surface and cross-sectional hardness were assessed to obtain the percentage of surface hardness recovery (%SHR) and the integrated loss of subsurface hardness (ΔKHN). The results showed that %SHR was similar among acidic dentifrices with 412, 550, 1,100 µgF/g and to the positive control (Tukey's test; p>0.05). For ΔKHN, the acidic dentifrice with 550 µg F/g showed a better performance when compared with the positive control. It can be concluded that acidic dentifrice 550 µgF/g had similar remineralization capacity to that of positive control.


2020 ◽  
Vol 54 (3) ◽  
pp. 250-257 ◽  
Author(s):  
Daniele Mara da Silva Ávila ◽  
Marina Gullo Augusto ◽  
Rayssa Ferreira Zanatta ◽  
Tais Scaramucci ◽  
Idalina Vieira Aoki ◽  
...  

This in vitro study investigated whether Carbopol 980 polymer could potentiate the anti-erosive effect of solutions containing sodium fluoride (F) and sodium fluoride associated with stannous chloride (FS). The dissolution of hydroxyapatite treated with the experimental solutions (F [500 ppm F–], F + Carbopol [0.1%], FS [500 ppm F– + 800 ppm Sn2+], FS + Carbopol) was evaluated. Deionized water was the negative control, and a commercial mouth rinse (AmF/NaF/SnCl2; 500 ppm F + 800 ppm Sn2+; Elmex® Erosion Protection) was the positive control. The solutions were also evaluated in an erosion-rehardening protocol, with two treatments per day, using bovine enamel specimens (n = 15) and human saliva. The acid challenge was performed using 0.3% citric acid (pH 2.6) for 2 min. Microhardness was measured at different times: baseline, after the first erosive challenge, after treatment, and after the second erosive challenge. Based on microhardness values, the demineralization, rehardening, and protective potentials were calculated. The alkali-soluble fluoride on enamel surfaces was also measured. Data were analyzed using ANOVA and Tukey tests (α = 0.05). Groups treated with FS + Carbopol showed the lowest hydroxyapatite dissolution and the highest rehardening and protective potentials. The measurement of alkali-soluble fluoride on enamel surfaces was also higher in the FS + Carbopol group. Carbopol was able to significantly increase the protective effect of the fluoridated solutions in addition to optimizing the adsorption of fluoride on the enamel surface.


2019 ◽  
Vol 44 (1) ◽  
pp. 76-87 ◽  
Author(s):  
E Crastechini ◽  
AB Borges ◽  
CRG Torres

SUMMARY Objectives: To evaluate the effect of a remineralizing gel combining fluoride and calcium silicate/phosphate or a sodium fluoride gel on bleached enamel microhardness, color, and wear susceptibility. Methods and Materials: Two hundred forty bovine enamel-dentin samples were prepared. Baseline analysis of Knoop microhardness, color coordinates (L*a*b*), and surface profile were performed. According to the baseline microhardness values, specimens were stratified into six groups (n=40): NC (negative control)—no treatment; BL (positive control)—bleaching with 40% hydrogen peroxide gel (Opalescence Boost, Ultradent); BL/Rs—bleaching + application of calcium silicate/phosphate gel (Regenerate Serum, Unilever - Rs); Rs/BL—Rs + bleaching; Rs/BL/Rs—Rs + bleaching + Rs; and BL/F—bleaching + 2% sodium fluoride gel. After the treatment described for each group, color change (ΔE) and microhardness were evaluated again. To evaluate abrasion susceptibility, samples were randomly divided into two subgroups, according to the toothpaste used (Cp—Close Up or Rt—Regenerate), and underwent 100,000 brushing strokes. The profile of each sample was evaluated and the mean wear calculated. The data were analyzed by ANOVA and Tukey tests. Results: All bleached groups showed a significant reduction of microhardness in relation to the negative control. The groups treated with remineralizing gels showed a significantly higher microhardness and less wear than the positive control, although nonsignificant differences were observed among them. Nonsignificant differences in ΔE were found among bleached groups. The groups brushed with Regenerate toothpaste showed significantly less wear than those brushed with Close Up toothpaste. Conclusions: The remineralizing gels did not interfere with bleaching efficacy. However, all the treatments minimized the surface hardness reduction caused by the bleaching procedure and enamel loss after abrasion. Regenerate toothpaste resulted in less enamel abrasion.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manuela da Silva Spinola ◽  
Sabrina Elise Moecke ◽  
Natália Rivoli Rossi ◽  
Toshiyuki Nakatsuka ◽  
Alessandra Bühler Borges ◽  
...  

Abstract This study evaluated the efficacy of S-PRG vanishes on preventing enamel demineralization. Bovine enamel specimens were obtained, polished and the baseline Knoop microhardness was evaluated. Specimens were stratified into six groups (n = 15), according to the varnish applied: S10—experimental varnish containing 10% of S-PRG fillers, S20—20% of S-PRG fillers, S30—30% of S-PRG fillers; S40—40% of S-PRG fillers; PC (positive control)—5% of NaF; NC (negative control)—no treatment was performed. Half of enamel surfaces were protected to work as a control and varnishes were applied over the unprotected area. A demineralizing pH-cycling was performed, and surface and cross-sectional microhardness were measured. The percentage of microhardness of the treated area was calculated comparing with the untreated area. Statistical analysis was performed by one-way ANOVA and Tukey’s test (p = 5%). All experimental S-PRG varnishes protected against demineralization in relation to no treatment, but S40 was the most effective on the surface. For all depths, S30 and S40 were superior in enamel demineralization prevention than other S-PRG filler concentrations and 5% NaF. It was concluded that S-RPG filler containing varnishes were effective to prevent enamel demineralization. The higher concentrated products were more effective than 5% sodium fluoride on surface demineralization prevention.


2016 ◽  
Vol 50 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Luiza P.S. Cassiano ◽  
Senda Charone ◽  
Juliana G. Souza ◽  
Ligia C. Leizico ◽  
Juliano P. Pessan ◽  
...  

This study analysed in vitro the effect of milk against dental erosion, considering three factors: the type of milk (bovine whole/fat-free), the presence of different fluoride concentrations and the time of application (before/after erosive challenge). Bovine enamel (n = 15/group) and root dentine (n = 12/group) specimens were submitted to the following treatments: after the first erosive challenge - 0.9% NaCl solution (negative control), whole milk with 0, 2.5, 5.0 and 10.0 ppm F, fat-free milk with 0, 2.5, 5.0 and 10.0 ppm F, and 0.05% NaF solution (positive control); before the first erosive challenge - whole milk with 0, 2.5, 5.0 and 10.0 ppm F, fat-free milk with 0, 2.5, 5.0 and 10.0 ppm F, and 0.05% NaF solution (positive control). Specimens were submitted to demineralisation-remineralisation regimes 4 times/day for 5 days. The response variables were enamel and dentine loss (in micrometres). Data were analysed using Kruskal-Wallis/Dunn's test (p < 0.05). For enamel, whole milk containing 10 ppm F, applied before the erosive challenge, was the most protective treatment, but with no significant difference compared with the same treatment carried out after the erosive challenge. For dentine, whole fluoridated milk (all concentrations, after), fat-free 10 ppm F milk (after, before) and whole milk with or without F (except 2.5 ppm F, all before) significantly reduced dentine erosion. It seems that the presence of fluoride, especially at 10 ppm, is the most important factor in reducing dental erosion.


2021 ◽  
Author(s):  
Juliana Campos Vieira ◽  
Jaime Aparecido Cury ◽  
Antonio Pedro Ricomini Filho

We have hypothesized that the association between human milk and caries in breastfeeding children could be explained by the combination of a diurnal cariogenic diet with the nocturnal lactose fermentation, conditions simulated in this experimental study. Cariogenic biofilm was formed on bovine enamel slabs, which were exposed 8x/day for 3 min to a 10% sucrose solution, simulating a highly cariogenic diurnal diet, or 50 mM NaCl solution (control). Simulating the nocturnal retention of milk in mouth, biofilms were transferred to culture medium containing 0.7% lactose for 2 h, or only to culture medium (control). Four groups were designed (n=12): Ctrl, no exposure to diurnal sucrose or nocturnal lactose; Lac, only nocturnal exposure to lactose (2 h); Suc, only diurnal exposure to sucrose (8x/day); and Suc→Lac, diurnal exposure to sucrose (8x/day) followed by nocturnal exposure to lactose (2 h). The medium was changed 3x/day, at the beginning of the day, and after diurnal and nocturnal exposures. Calcium in the medium was determined as chemical indicator of partial demineralizations occurred during the diurnal and the nocturnal treatments; the medium pH was also determined. After 96 h of growth, biofilms were harvested to evaluate CFU, biomass, and extracellular polysaccharides, soluble and insoluble. The percentage of enamel surface hardness loss (%SHL) was evaluated as cumulative demineralization. Data were analyzed by one-way ANOVA, Tukey’s test (α=5%). Highest %SHL (p<0.05) was found for Suc→Lac (40.6%) group when compared to Suc (32.1%), Lac (7.7%), and Ctrl (3.8%). Calcium released during the diurnal and nocturnal treatments were respectively: Suc→Lac=Suc>Lac=Ctrl and Suc→Lac=Lac>Suc=Ctrl (p<0.05). Regarding Ctr group, calcium released from nocturnal lactose fermentation by Suc→Lac group was 4-fold greater than that provoked by Lac group. The findings were supported by the pH of the media. The data suggest that the biofilm formed under diurnal exposure to sucrose enhances the cariogenicity of nocturnal exposure to lactose.


2015 ◽  
Vol 49 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Constanza E. Fernández ◽  
Rodrigo A. Giacaman ◽  
Livia M. Tenuta ◽  
Jaime A. Cury

Despite promising results using probiotics, evidence of the preventive effect on enamel demineralization is insufficient and the cariogenic potential of probiotics is still controversial. Probiotics could affect biofilm formation and interfere with adherence, growth or coaggregation with Streptococcus mutans in biofilms. However, most of the studies have been conducted using planktonic bacteria. Hence, the aim of the study was to assess the effect of probiotic bacteria on the cariogenicity of S. mutans using an in vitro biofilm caries model on enamel. Single-species biofilms (S. mutans UA159, SM or Lactobacillus rhamnosus LB21, LB) or dual-species biofilms simultaneously inoculated (SM + LB) or LB inoculated 8 h after SM (SM → LB) were grown for 96 h. Biofilms were formed on bovine enamel saliva-coated slabs of known surface hardness (SH) and immersed in culture media. Biofilms were exposed 8 times per day to 10% sucrose. Medium pH was monitored twice daily as a biofilm acidogenicity indicator. After 96 h, biofilms were collected to determine biomass and bacteria viability. Slab demineralization was calculated as percentage of SH loss (%SHL). Additionally, the model was tested with different concentrations of the initial inoculum (103, 106, 108 cells/ml) and different adhesion times (2 or 8 h). The dual-species biofilm revealed no LB effects on SM cariogenicity, without changes in acidogenicity or %SHL among groups (p > 0.05, n = 12). Lack of activity of LB on SM cariogenicity persisted even when 105 times higher concentration of the probiotic was tested. Coaggregation was not observed. In conclusion, findings suggest that LB does not reduce cariogenicity of SM in a validated experimental caries model.


2008 ◽  
Vol 19 (2) ◽  
pp. 91-96 ◽  
Author(s):  
Gisele Pedroso Moi ◽  
Lívia Maria Andaló Tenuta ◽  
Jaime Aparecido Cury

This blind and randomized study tested in vitro, using validated protocols, the anticaries potential of an experimental fluoride mouthrinse. One-hundred enamel slabs, half sound and half with caries-like lesions (carious), all with known surface microhardness (SMH), were submitted to 3 treatment groups: A) a placebo mouthrinse (negative control); B) a positive control mouthrinse containing 0.05% NaF; and C) an experimental formulation containing 0.05% NaF and cetylpyridinium chloride as an antibacterial substance. To evaluate the formation of F products on enamel, sound (n=10) and carious (n=10) slabs were treated with the formulations during 10 min and loosely and firmly-bound F formed in enamel were determined after extraction with alkali and acid, respectively. To evaluate the inhibition of enamel demineralization, sound enamel slabs (n=10) were treated with the mouthrinse formulations 2x/day during 1 min and subjected to a pH-cycling regimen simulating a cariogenic challenge (demineralization). To evaluate enamel remineralization, the carious slabs (n=10) were submitted to the treatments 3x/day and subjected to a pH-cycling model simulating a remineralizing condition. After 8 days, enamel SMH was determined again and the percentage of SMH loss or SMH recovery was calculated for the sound and carious slabs, respectively. The experimental formulation was superior to the negative control (p<0.05) and equivalent to the positive control (p>0.05) in the formation of F products in enamel, and in the inhibition of enamel demineralization and enhancement of remineralization. These data suggest that the tested experimental fluoride mouthrinse has anticaries potential.


Sign in / Sign up

Export Citation Format

Share Document