PhosSNPs-Regulated Gene Network and Pathway Significant for Rheumatoid Arthritis

2021 ◽  
pp. 1-11
Author(s):  
Pei He ◽  
Fei Jiang ◽  
Wei Guo ◽  
Yu-Fan Guo ◽  
Shu-Feng Lei ◽  
...  

<b><i>Objectives:</i></b> Peripheral blood mononuclear cells (PBMCs) are critical for immunity and participate in multiple human diseases, including rheumatoid arthritis (RA). PhosSNPs are nonsynonymous SNPs influencing protein phosphorylation, thus probably modulate cell signaling and gene expression. We aimed to identify phosSNPs-regulated gene network/pathway potentially significant for RA. <b><i>Methods:</i></b> We collected genome-wide phosSNP genotyping data and transcriptome-wide mRNA expression data from PBMCs of a Chinese sample. We discovered and verified with public datasets differentially expressed genes (DEGs) associated with RA, and replicated RA-associated SNPs in our study sample. We performed a targeted expression quantitative trait locus (eQTL) study on significant phosSNPs and DEGs. <b><i>Results:</i></b> We identified 29 nominally significant eQTL phosSNPs and 83 target genes, and constructed comprehensive regulatory/interaction networks, highlighting the vital effects of two eQTL phosSNPs (rs371513 and rs4824675, FDR &#x3c;0.05) and four critical node genes (HSPA4, NDUFA2, MRPL15, and ATP5O). Besides, two node/key genes NDUFA2 and ATP5O, regulated by rs371513, were significantly enriched in mitochondrial oxidative phosphorylation pathway. Besides, four pairs of eQTL effects were replicated independently in whole blood and/or transformed fibroblasts. <b><i>Conclusions:</i></b> The findings delineated a potential role of protein phosphorylation and genetic variations in RA and warranted the significant roles of phosSNPs in regulating RA-associated genes expression in PBMCs. The results pointed out the relevance and significance of oxidative phosphorylation pathway to RA.

2019 ◽  
Author(s):  
Hui-Hsin Chang ◽  
Ching-Huang Ho ◽  
Beverly Tomita ◽  
Andrea A. Silva ◽  
Jeffrey A. Sparks ◽  
...  

AbstractDespite the development of several targeted therapies for rheumatoid arthritis (RA), there is still no reliable drug-specific predictor to assist rheumatologists in selecting the most effective targeted therapy for each patient. Recently, a gene signature caused by impaired induction of PTPN22 in anti-CD3 stimulated peripheral blood mononuclear cells (PBMC) was observed in healthy at-risk individuals. However, the downstream target genes of PTPN22 and the molecular mechanisms regulating its expression are still poorly understood. Here we report that the PTPN22 gene signature is also present in PBMC from patients with active RA and can be reversed after effective treatment. The expression of PTPN22 correlates with that of more than 1000 genes in Th cells of anti-CD3 stimulated PBMC of healthy donors and is inhibited by TNFα or CD28 signals, but not IL-6, through distinct mechanisms. In addition, the impaired induction of PTPN22 in PBMC of patients with active RA can be normalized in vitro by several targeted therapies. More importantly, the in vitro normalization of PTPN22 expression correlates with clinical response to the targeted therapies in a longitudinal RA cohort. Thus, in vitro normalization of PTPN22 expression by targeted therapies can potentially be used to predict clinical response in a drug-specific manner.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 18.2-18
Author(s):  
P. Brown ◽  
A. Anderson ◽  
B. Hargreaves ◽  
A. Morgan ◽  
J. D. Isaacs ◽  
...  

Background:The long term outcomes for patients with rheumatoid arthritis (RA) depend on early and effective disease control. Methotrexate remains the key first line disease modifying therapy for the majority of patients, with 40% achieving an ACR50 on monotherapy(1). There are at present no effective biomarkers to predict treatment response, preventing effective personalisation of therapy. A putative mechanism of action of methotrexate, the potentiation of anti-inflammatory adenosine signalling, may inform biomarker discovery. By antagonism of the ATIC enzyme in the purine synthesis pathway, methotrexate has been proposed to increase the release of adenosine moieties from cells, which exert an anti-inflammatory effect through interaction with ADORA2 receptors(2). Lower expression of CD39 (a cell surface 5-’ectonucleotidase required for the first step in the conversion of ATP to adenosine) on circulating regulatory T-Lymphocytes (Tregs) was previously identified in patients already established on methotrexate who were not responding (DAS28 >4.0 vs <3.0)(3). We therefore hypothesised that pre-treatment CD39 expression on these cells may have clinical utility as a predictor of early methotrexate efficacy.Objectives:To characterise CD39 expression in peripheral blood mononuclear cells in RA patients naïve to disease modifying therapy commencing methotrexate, and relate this expression to 4 variable DAS28CRP remission (<2.6) at 6 months.Methods:68 treatment naïve early RA patients starting methotrexate were recruited from the Newcastle Early Arthritis Clinic and followed up for 6 months. Serial blood samples were taken before and during methotrexate therapy with peripheral blood mononuclear cells isolated by density centrifugation. Expression of CD39 by major immune subsets (CD4+ and CD8+ T-cells, B-lymphocytes, natural killer cells and monocytes) was determined by flow cytometry. The statistical analysis used was binomial logistic regression with baseline DAS28CRP used as a covariate due to the significant association of baseline disease activity with treatment response.Results:Higher pre-treatment CD39 expression was observed in circulating CD4+ T-cells of patients who subsequently achieved clinical remission at 6 months versus those who did not (median fluorescence 4854.0 vs 3324.2; p = 0.0108; Figure 1-A). This CD39 expression pattern was primarily accounted for by the CD4+CD25 high sub-population (median fluorescence 9804.7 vs 6455.5; p = 0.0065; Figure 1-B). These CD25 high cells were observed to have higher FoxP3 and lower CD127 expression than their CD39 negative counterparts, indicating a Treg phenotype. No significant associations were observed with any other circulating subset. A ROC curve demonstrates the discriminative utility of differential CD39 expression in the CD4+CD25 high population for the prediction of DAS28CRP remission in this cohort, showing greater specificity than sensitivity for remission prediction(AUC: 0.725; 95% CI: 0.53 - 0.92; Figure 1-C). Longitudinally, no significant induction or suppression of the CD39 marker was observed amongst patients who did or did not achieve remission over the 6 months follow-up period.Figure 1.Six month DAS28CRP remission versus pre-treatment median fluorescence of CD39 expression on CD4+ T-cells (A); CD25 High expressing CD4+ T-cells (B); and ROC curve of predictive utility of pre-treatment CD39 expression on CD25 High CD4+ T-cells (C).Conclusion:These findings support the potential role of CD39 in the mechanism of methotrexate response. Expression of CD39 on circulating Tregs in treatment-naïve RA patients may have particular value in identifying early RA patients likely to respond to methotrexate, and hence add value to evolving multi-parameter discriminatory algorithms.References:[1]Hazlewood GS, et al. BMJ. 2016 21;353:i1777[2]Brown PM, et al. Nat Rev Rheumatol. 2016;12(12):731-742[3]Peres RS, et al. Proc Natl Acad Sci U S A. 2015;112(8):2509-2514Disclosure of Interests:None declared


2012 ◽  
Vol 39 (7) ◽  
pp. 1320-1325 ◽  
Author(s):  
LAURINDO FERREIRA da ROCHA ◽  
ÂNGELA LUZIA BRANCO PINTO DUARTE ◽  
ANDRÉA TAVARES DANTAS ◽  
HENRIQUE ATAÍDE MARIZ ◽  
IVAN da ROCHA PITTA ◽  
...  

Objective.To analyze the role of interleukin 22 (IL-22) in rheumatoid arthritis (RA).Methods.IL-22 serum levels were measured in 83 patients with established RA under treatment with disease-modifying antirheumatic drugs and in 30 healthy controls matched for age and sex. Patients were assessed for clinical and laboratory variables. Correlations of IL-22 serum levels with disease activity measures [Clinical Disease Activity Index (CDAI) and Disease Activity Score for 28 joints (DAS28)], serological markers, bone erosions, and demographic factors were assessed. Peripheral blood mononuclear cells (PBMC) from 30 patients with RA and 14 controls were purified and stimulatedin vitrowith phorbol myristate acetate (PMA)/ionomycin. IL-22 production by PBMC and in serum was investigated by ELISA.Results.IL-22 levels were increased in patients with RA compared with controls (mean 432.37 pg/ml and 67.45 pg/ml, respectively; p < 0.001). Levels of IL-22 correlated with DAS28 and CDAI measures. Rheumatoid factor (RF) positivity was correlated with higher levels of IL-22 in patients with RA (mean 575.08 pg/ml; p = 0.001). The presence of bone erosions was associated with high IL-22 levels (p = 0.0001). PBMC stimulated with PMA/ionomycin expressed higher levels of IL-22 in patients with RA than controls but this was not significant (mean 584.75 pg/ml and 295.57 pg/ml; p = 0.553).Conclusion.IL-22 is elevated in the serum of patients with established RA. Elevated serum IL-22 allows discrimination between patients with different clinical and laboratory measures and indicates the potential of IL-22 as an additional tool for assessment of activity in RA, particularly in patients with RF antibodies and longterm disease. IL-22 is associated with bone-destructive disease.


2012 ◽  
Vol 39 (5) ◽  
pp. 916-928 ◽  
Author(s):  
BERTALAN MESKO ◽  
SZILARD POLISKA ◽  
SZILVIA SZAMOSI ◽  
ZOLTAN SZEKANECZ ◽  
JANOS PODANI ◽  
...  

Objective.Tocilizumab, a humanized anti-interleukin-6 receptor monoclonal antibody, has recently been approved as a biological therapy for rheumatoid arthritis (RA) and other diseases. It is not known if there are characteristic changes in gene expression and immunoglobulin G glycosylation during therapy or in response to treatment.Methods.Global gene expression profiles from peripheral blood mononuclear cells of 13 patients with RA and active disease at Week 0 (baseline) and Week 4 following treatment were obtained together with clinical measures, serum cytokine levels using ELISA, and the degree of galactosylation of the IgG N-glycan chains. Gene sets separating responders and nonresponders were tested using canonical variates analysis. This approach also revealed important gene groups and pathways that differentiate responders from nonresponders.Results.Fifty-nine genes showed significant differences between baseline and Week 4 and thus correlated with treatment. Significantly, 4 genes determined responders after correction for multiple testing. Ten of the 12 genes with the most significant changes were validated using real-time quantitative polymerase chain reaction. An increase in the terminal galactose content of N-linked glycans of IgG was observed in responders versus nonresponders, as well as in treated samples versus samples obtained at baseline.Conclusion.As a preliminary report, gene expression changes as a result of tocilizumab therapy in RA were examined, and gene sets discriminating between responders and nonresponders were found and validated. A significant increase in the degree of galactosylation of IgG N-glycans in patients with RA treated with tocilizumab was documented.


Sign in / Sign up

Export Citation Format

Share Document