scholarly journals Can the Dynamic Colouration and Patterning of Bluelined Goatfish (Mullidae; Upeneichthys lineatus) Be Perceived by Conspecifics?

2021 ◽  
pp. 1-21
Author(s):  
Louise Tosetto ◽  
Jane E. Williamson ◽  
Thomas E. White ◽  
Nathan S. Hart 

Bluelined goatfish (<i>Upeneichthys lineatus</i>) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that <i>U. lineatus</i> can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether <i>U. lineatus</i> possess visual pigments with sensitivity to long (“red”) wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while <i>U. lineatus</i>lack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that <i>U. lineatus</i>can distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that <i>U. lineatus</i> can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that <i>U. lineatus</i> can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that <i>U. lineatus</i> have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.

2012 ◽  
Vol 279 (1742) ◽  
pp. 3482-3490 ◽  
Author(s):  
Atsuko Matsushita ◽  
Hiroko Awata ◽  
Motohiro Wakakuwa ◽  
Shin-ya Takemura ◽  
Kentaro Arikawa

The eye of the Glacial Apollo butterfly, Parnassius glacialis , a ‘living fossil’ species of the family Papilionidae, contains three types of spectrally heterogeneous ommatidia. Electron microscopy reveals that the Apollo rhabdom is tiered. The distal tier is composed exclusively of photoreceptors expressing opsins of ultraviolet or blue-absorbing visual pigments, and the proximal tier consists of photoreceptors expressing opsins of green or red-absorbing visual pigments. This organization is unique because the distal tier of other known butterflies contains two green-sensitive photoreceptors, which probably function in improving spatial and/or motion vision. Interspecific comparison suggests that the Apollo rhabdom retains an ancestral tiered pattern with some modification to enhance its colour vision towards the long-wavelength region of the spectrum.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Polina Drozdova ◽  
Alena Kizenko ◽  
Alexandra Saranchina ◽  
Anton Gurkov ◽  
Maria Firulyova ◽  
...  

Abstract Background Vision is a crucial sense for the evolutionary success of many animal groups. Here we explore the diversity of visual pigments (opsins) in the transcriptomes of amphipods (Crustacea: Amphipoda) and conclude that it is restricted to middle (MWS) and long wavelength-sensitive (LWS) opsins in the overwhelming majority of examined species. Results We evidenced (i) parallel loss of MWS opsin expression in multiple species (including two independently evolved lineages from the deep and ancient Lake Baikal) and (ii) LWS opsin amplification (up to five transcripts) in both Baikal lineages. The number of LWS opsins negatively correlated with habitat depth in Baikal amphipods. Some LWS opsins in Baikal amphipods contained MWS-like substitutions, suggesting that they might have undergone spectral tuning. Conclusions This repeating two-step evolutionary scenario suggests common triggers, possibly the lack of light during the periods when Baikal was permanently covered with thick ice and its subsequent melting. Overall, this observation demonstrates the possibility of revealing climate history by following the evolutionary changes in protein families.


2010 ◽  
Vol 22 (5) ◽  
pp. 888-902 ◽  
Author(s):  
Marco Tamietto ◽  
Franco Cauda ◽  
Luca Latini Corazzini ◽  
Silvia Savazzi ◽  
Carlo A. Marzi ◽  
...  

Following destruction or deafferentation of primary visual cortex (area V1, striate cortex), clinical blindness ensues, but residual visual functions may, nevertheless, persist without perceptual consciousness (a condition termed blindsight). The study of patients with such lesions thus offers a unique opportunity to investigate what visual capacities are mediated by the extrastriate pathways that bypass V1. Here we provide evidence for a crucial role of the collicular–extrastriate pathway in nonconscious visuomotor integration by showing that, in the absence of V1, the superior colliculus (SC) is essential to translate visual signals that cannot be consciously perceived into motor outputs. We found that a gray stimulus presented in the blind field of a patient with unilateral V1 loss, although not consciously seen, can influence his behavioral and pupillary responses to consciously perceived stimuli in the intact field (implicit bilateral summation). Notably, this effect was accompanied by selective activations in the SC and in occipito-temporal extrastriate areas. However, when instead of gray stimuli we presented purple stimuli, which predominantly draw on S-cones and are thus invisible to the SC, any evidence of implicit visuomotor integration disappeared and activations in the SC dropped significantly. The present findings show that the SC acts as an interface between sensory and motor processing in the human brain, thereby providing a contribution to visually guided behavior that may remain functionally and anatomically segregated from the geniculo-striate pathway and entirely outside conscious visual experience.


2021 ◽  
Author(s):  
Bart Root ◽  
Javier Fullea ◽  
Jörg Ebbing ◽  
Zdenek Martinec

&lt;p&gt;Global gravity field data obtained by dedicated satellite missions is used to study the density distribution of the lithosphere. Different multi-data joint inversions are using this dataset together with other geophysical data to determine the physical characteristics of the lithosphere. The gravitational signal from the deep Earth is usually removed by high-pass filtering of the model and data, or by appropriately selecting insensitive gravity components in the inversion. However, this will remove any long-wavelength signal inherent to lithosphere. A clear choice on the best-suited approach to remove the sub-lithospheric gravity signal is missing.&amp;#160;&lt;/p&gt;&lt;p&gt;Another alternative is to forward model the gravitational signal of these deep situated mass anomalies and subtract it from the observed data, before the inversion. Global tomography provides shear-wave velocity distribution of the mantle, which can be transformed into density anomalies. There are difficulties in constructing a density model from this data. Tomography relies on regularisation which smoothens the image of the mantle anomalies. Also, the shear-wave anomalies need to be converted to density anomalies, with uncertain conversion factors related to temperature and composition. Understanding the sensitivity of these effects could help determining the interaction of the deep Earth and the lithosphere.&lt;/p&gt;&lt;p&gt;In our study the density anomalies of the mantle, as well as the effect of CMB undulations, are forward modelled into their gravitational potential field, such that they can be subtracted from gravity observations. The reduction in magnitude of the density anomalies due to the regularisation of the global tomography models is taken into account. The long-wavelength region of the density estimates is less affected by the regularisation and can be used to fix the mean conversion factor to transform shear wave velocity to density. We present different modelling approaches to add the remaining dynamic topography effect in lithosphere models. This results in new solutions of the density structure of the lithosphere that both explain seismic observations and gravimetric measurements. The introduction of these dynamic forces is a step forward in understanding how to properly use global gravity field data in joint inversions of lithosphere models.&lt;/p&gt;


1982 ◽  
Vol 69 ◽  
pp. 453-454
Author(s):  
W. Wargau ◽  
H. Drechsel ◽  
J. Rahe ◽  
G. Klare ◽  
B. Wolf ◽  
...  

TT Ari was detected by Strohmeier et al. (1957) and is classified as a novalike variable. It was hitherto unclear whether TT Ari is a special type of dwarf nova (Warner, 1976) or an old nova (Cowley et al., 1975). Our group obtained a total of four IUE spectra between 1979 and 1981 in the short and long wavelength region. The first spectrum was taken in July 1979, when the system had a visual brightness of 11.3 magnitudes. The following two IUE observations in November 1980 revealed TT Ari in the lowest optical state (V = 14m.3) observed so far. The fourth spectrum was obtained during the rise to maximum in January 1981, when the system had an apparent magnitude of V = 11m.8. From this behavior, Krautter et al. (1981) concluded that TT Ari is a dwarf nova with extremely extended standstills as they are typical for Z Cam stars.


1998 ◽  
Vol 15 (4) ◽  
pp. 643-651 ◽  
Author(s):  
JEFFRY I. FASICK ◽  
THOMAS W. CRONIN ◽  
DAVID M. HUNT ◽  
PHYLLIS R. ROBINSON

To assess the dolphin's capacity for color vision and determine the absorption maxima of the dolphin visual pigments, we have cloned and expressed the dolphin opsin genes. On the basis of sequence homology with other mammalian opsins, a dolphin rod and long-wavelength sensitive (LWS) cone opsin cDNAs were identified. Both dolphin opsin cDNAs were expressed in mammalian COS-7 cells. The resulting proteins were reconstituted with the chromophore 11-cis-retinal resulting in functional pigments with absorption maxima (λmax) of 488 and 524 nm for the rod and cone pigments respectively. These λmax values are considerably blue shifted compared to those of many terrestrial mammals. Although the dolphin possesses a gene homologous to other mammalian short-wavelength sensitive (SWS) opsins, it is not expressed in vivo and has accumulated a number of deletions, including a frame-shift mutation at nucleotide position 31. The dolphin therefore lacks the common dichromatic form of color vision typical of most terrestrial mammals.


2019 ◽  
Vol 19 (3) ◽  
pp. 226-229
Author(s):  
S.D. Bardasevska ◽  
I.M. Budzulyak ◽  
S.I. Budzulyak ◽  
B.I. Rachiy ◽  
R.V. Ilnytskyi ◽  
...  

The proposed method of synthesis of CQDs on the basis of nanoporous carbon obtained from plant raw materials. It is established that in the short-wave region a band is registered, which is due to the exciton mechanism of recombination, whereas in the long-wavelength region it is related to the state of defects. The kinetics of PL extinction is not strictly exponential, which most likely indicates the distributed nature of fading from individual emitters.


2007 ◽  
Vol 85 (4) ◽  
pp. 584-587 ◽  
Author(s):  
A.J. Sillman ◽  
E.K. Ong ◽  
E.R. Loew

Lake sturgeon ( Acipenser fulvescens Rafinesque, 1817) photoreceptors were studied with scanning electron microscopy and microspectrophotometry. The retina contains both rods and cones, with cones estimated composing about 30% of the photoreceptor population. Only large single cones were identified and they are similar to those found in other species of the order Acipenseriformes. The rods are large, with long, broad outer segments, and are similar to the dominant rod found in other sturgeons and the North American paddlefish ( Polyodon spathula (Walbaum, 1792)). Mean (SD) rod packing density at 22 624 ± 3 509 rods/mm2 is low compared with those of other animals that function primarily in dim light. The visual pigment of the rods has a mean (SD) peak absorbance (λmax) at 541 ± 2 nm. Three different cone populations were identified: a long wavelength sensitive cone containing a visual pigment with λmax at 619 ± 3 nm; middle wavelength sensitive cone with λmax at 538 ± 1 nm; and short wavelength sensitive cone with λmax at 448 ± 1 nm. All the visual pigments are based on the vitamin A2 chromophore.


2002 ◽  
Vol 205 (7) ◽  
pp. 927-938 ◽  
Author(s):  
Ellis R. Loew ◽  
Leo J. Fleishman ◽  
Russell G. Foster ◽  
Ignacio Provencio

SUMMARY We report microspectrophotometric (MSP) data for the visual pigments and oil droplets of 17 species of Caribbean anoline lizard known to live in differing photic habitats and having distinctly different dewlap colors. The outgroup Polychrus marmoratus was also examined to gain insight into the ancestral condition. Except for Anolis carolinensis, which is known to use vitamin A2 as its visual pigment chromophore, all anoline species examined possessed at least four vitamin-A1-based visual pigments with maximum absorbance (λmax) at 564, 495,455 and 365 nm. To the previously reported visual pigments for A. carolinensis we add an ultraviolet-sensitive one withλ max at 365 nm. Five common classes of oil droplet were measured, named according to apparent color and associated with specific cone classes — yellow and green in long-wavelength-sensitive (LWS) cones,green only in medium-wavelength-sensitive (MWS) cones and colorless in short-wavelength-sensitive (SWS) and ultraviolet-sensitive (UVS) cones. MSP data showed that the colorless droplet in the SWS cone had significant absorption between 350 and 400 nm, while the colorless droplet in the UVS cone did not. The pattern for Polychrus marmoratus was identical to that for the anoles except for the presence of a previously undescribed visual cell with a rod-like outer segment, a visual pigment with a λmaxof 497 nm and a colorless oil droplet like that in the UVS cones. These findings suggest that anoline visual pigments, as far as they determine visual system spectral sensitivity, are not necessarily adapted to the photic environment or to the color of significant visual targets (e.g. dewlaps).


2021 ◽  
Author(s):  
Elena Pyatigorskaya ◽  
Matteo Maran ◽  
Emiliano Zaccarella

Language comprehension proceeds at a very fast pace. It is argued that context influences the speed of language comprehension by providing informative cues for the correct processing of the incoming linguistic input. Priming studies investigating the role of context in language processing have shown that humans quickly recognise target words that share orthographic, morphological, or semantic information with their preceding primes. How syntactic information influences the processing of incoming words is however less known. Early syntactic priming studies reported faster recognition for noun and verb targets (e.g., apple or sing) following primes with which they form grammatical phrases or sentences (the apple, he sings). The studies however leave open a number of questions about the reported effect, including the degree of automaticity of syntactic priming, the facilitative versus inhibitory nature, and the specific mechanism underlying the priming effect—that is, the type of syntactic information primed on the target word. Here we employed a masked syntactic priming paradigm in four behavioural experiments in German language to test whether masked primes automatically facilitate the categorization of nouns and verbs presented as flashing visual words. Overall, we found robust syntactic priming effects with masked primes—thus suggesting high automaticity of the process—but only when verbs were morpho-syntactically marked (er kau-t; he chew-s). Furthermore, we found that, compared to baseline, primes slow down target categorisation when the relationship between prime and target is syntactically incorrect, rather than speeding it up when the prime-target relationship is syntactically correct. This argues in favour of an inhibitory nature of syntactic priming. Overall, the data indicate that humans automatically extract abstract syntactic features from word categories as flashing visual words, which has an impact on the speed of successful language processing during language comprehension.


Sign in / Sign up

Export Citation Format

Share Document