scholarly journals Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis

2012 ◽  
Vol 279 (1742) ◽  
pp. 3482-3490 ◽  
Author(s):  
Atsuko Matsushita ◽  
Hiroko Awata ◽  
Motohiro Wakakuwa ◽  
Shin-ya Takemura ◽  
Kentaro Arikawa

The eye of the Glacial Apollo butterfly, Parnassius glacialis , a ‘living fossil’ species of the family Papilionidae, contains three types of spectrally heterogeneous ommatidia. Electron microscopy reveals that the Apollo rhabdom is tiered. The distal tier is composed exclusively of photoreceptors expressing opsins of ultraviolet or blue-absorbing visual pigments, and the proximal tier consists of photoreceptors expressing opsins of green or red-absorbing visual pigments. This organization is unique because the distal tier of other known butterflies contains two green-sensitive photoreceptors, which probably function in improving spatial and/or motion vision. Interspecific comparison suggests that the Apollo rhabdom retains an ancestral tiered pattern with some modification to enhance its colour vision towards the long-wavelength region of the spectrum.

2021 ◽  
pp. 1-21
Author(s):  
Louise Tosetto ◽  
Jane E. Williamson ◽  
Thomas E. White ◽  
Nathan S. Hart 

Bluelined goatfish (<i>Upeneichthys lineatus</i>) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that <i>U. lineatus</i> can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether <i>U. lineatus</i> possess visual pigments with sensitivity to long (“red”) wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while <i>U. lineatus</i>lack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that <i>U. lineatus</i>can distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that <i>U. lineatus</i> can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that <i>U. lineatus</i> can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that <i>U. lineatus</i> have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.


2021 ◽  
pp. 1-2
Author(s):  
Philip M. Novack-Gottshall ◽  
Roy E. Plotnick

The horseshoe crab Limulus polyphemus (Linnaeus, 1758) is a famous species, renowned as a ‘living fossil’ (Owen, 1873; Barthel, 1974; Kin and Błażejowski, 2014) for its apparently little-changed morphology for many millions of years. The genus Limulus Müller, 1785 was used by Leach (1819, p. 536) as the basis of a new family Limulidae and synonymized it with Polyphemus Lamarck, 1801 (Lamarck's proposed but later unaccepted replacement for Limulus, as discussed by Van der Hoeven, 1838, p. 8) and Xyphotheca Gronovius, 1764 (later changed to Xiphosura Gronovius, 1764, another junior synonym of Limulus). He also included the valid modern genus Tachypleus Leach, 1819 in the family. The primary authority of Leach (1819) is widely recognized in the neontological literature (e.g., Dunlop et al., 2012; Smith et al., 2017). It is also the authority recognized in the World Register of Marine Species (WoRMS Editorial Board, 2021).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Polina Drozdova ◽  
Alena Kizenko ◽  
Alexandra Saranchina ◽  
Anton Gurkov ◽  
Maria Firulyova ◽  
...  

Abstract Background Vision is a crucial sense for the evolutionary success of many animal groups. Here we explore the diversity of visual pigments (opsins) in the transcriptomes of amphipods (Crustacea: Amphipoda) and conclude that it is restricted to middle (MWS) and long wavelength-sensitive (LWS) opsins in the overwhelming majority of examined species. Results We evidenced (i) parallel loss of MWS opsin expression in multiple species (including two independently evolved lineages from the deep and ancient Lake Baikal) and (ii) LWS opsin amplification (up to five transcripts) in both Baikal lineages. The number of LWS opsins negatively correlated with habitat depth in Baikal amphipods. Some LWS opsins in Baikal amphipods contained MWS-like substitutions, suggesting that they might have undergone spectral tuning. Conclusions This repeating two-step evolutionary scenario suggests common triggers, possibly the lack of light during the periods when Baikal was permanently covered with thick ice and its subsequent melting. Overall, this observation demonstrates the possibility of revealing climate history by following the evolutionary changes in protein families.


2021 ◽  
pp. 1-15
Author(s):  
Juan López-Gappa ◽  
Leandro M. Pérez ◽  
Ana C.S. Almeida ◽  
Débora Iturra ◽  
Dennis P. Gordon ◽  
...  

Abstract Bryozoans with calcified frontal shields formed by the fusion of costae, collectively constituting a spinocyst, are traditionally assigned to the family Cribrilinidae. Today, this family is regarded as nonmonophyletic. In the Argentine Cenozoic, cribrilinids were until recently represented by only two fossil species from the Paleocene of Patagonia. This study describes the first fossil representatives of Jolietina and Parafigularia: J. victoria n. sp. and P. pigafettai n. sp., respectively. A fossil species of Figularia, F. elcanoi n. sp., is also described. The material comes from the early Miocene of the Monte León and Chenque formations (Patagonia, Argentina). For comparison, we also provide redescriptions of the remaining extant species of Jolietina: J. latimarginata (Busk, 1884) and J. pulchra Canu and Bassler, 1928a. The systematic position of some species previously assigned to Figularia is here discussed. Costafigularia n. gen. is erected, with Figularia pulcherrima Tilbrook, Hayward, and Gordon, 2001 as type species. Two species previously assigned to Figularia are here transferred to Costafigularia, resulting in C. jucunda n. comb. and C. tahitiensis n. comb. One species of Figularia is reassigned to Vitrimurella, resulting in V. ampla n. comb. The family Vitrimurellidae is here reassigned to the superfamily Cribrilinoidea. The subgenus Juxtacribrilina is elevated to genus rank. Inferusia is regarded as a subjective synonym of Parafigularia. Parafigularia darwini Moyano, 2011 is synonymized with I. taylori Kuklinski and Barnes, 2009, resulting in Parafigularia taylori n. comb. Morphological data suggest that these genera comprise different lineages, and a discussion on the disparities among cribrilinid (sensu lato) spinocysts is provided. UUID: http://zoobank.org/215957d3-064b-47e2-9090-d0309f6c9cd8


2021 ◽  
Author(s):  
Bart Root ◽  
Javier Fullea ◽  
Jörg Ebbing ◽  
Zdenek Martinec

&lt;p&gt;Global gravity field data obtained by dedicated satellite missions is used to study the density distribution of the lithosphere. Different multi-data joint inversions are using this dataset together with other geophysical data to determine the physical characteristics of the lithosphere. The gravitational signal from the deep Earth is usually removed by high-pass filtering of the model and data, or by appropriately selecting insensitive gravity components in the inversion. However, this will remove any long-wavelength signal inherent to lithosphere. A clear choice on the best-suited approach to remove the sub-lithospheric gravity signal is missing.&amp;#160;&lt;/p&gt;&lt;p&gt;Another alternative is to forward model the gravitational signal of these deep situated mass anomalies and subtract it from the observed data, before the inversion. Global tomography provides shear-wave velocity distribution of the mantle, which can be transformed into density anomalies. There are difficulties in constructing a density model from this data. Tomography relies on regularisation which smoothens the image of the mantle anomalies. Also, the shear-wave anomalies need to be converted to density anomalies, with uncertain conversion factors related to temperature and composition. Understanding the sensitivity of these effects could help determining the interaction of the deep Earth and the lithosphere.&lt;/p&gt;&lt;p&gt;In our study the density anomalies of the mantle, as well as the effect of CMB undulations, are forward modelled into their gravitational potential field, such that they can be subtracted from gravity observations. The reduction in magnitude of the density anomalies due to the regularisation of the global tomography models is taken into account. The long-wavelength region of the density estimates is less affected by the regularisation and can be used to fix the mean conversion factor to transform shear wave velocity to density. We present different modelling approaches to add the remaining dynamic topography effect in lithosphere models. This results in new solutions of the density structure of the lithosphere that both explain seismic observations and gravimetric measurements. The introduction of these dynamic forces is a step forward in understanding how to properly use global gravity field data in joint inversions of lithosphere models.&lt;/p&gt;


1996 ◽  
Vol 70 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Jacques Le Renard ◽  
Bruno Sabelli ◽  
Marco Taviani

The record of the fossil representatives of the family Juliidae is updated. The new genus Candinia is proposed, in the subfamily Juliinae, for two fossil species somewhat intermediate between Julia and Berthelinia. The new species Candinia pliocaenica is recorded from the lower Pliocene shallow marine deposits near Siena (Tuscany, Italy). This is the first record of Sacoglossa in the Mediterranean Basin. Based on the very specialized life habits of the Juliidae, it is suggested that subtropical Caulerpa algal prairies inhabited the Mediterranean during the early Pliocene, likely becoming extinct in this basin because of the mid-Pliocene climatic deterioration.


1982 ◽  
Vol 69 ◽  
pp. 453-454
Author(s):  
W. Wargau ◽  
H. Drechsel ◽  
J. Rahe ◽  
G. Klare ◽  
B. Wolf ◽  
...  

TT Ari was detected by Strohmeier et al. (1957) and is classified as a novalike variable. It was hitherto unclear whether TT Ari is a special type of dwarf nova (Warner, 1976) or an old nova (Cowley et al., 1975). Our group obtained a total of four IUE spectra between 1979 and 1981 in the short and long wavelength region. The first spectrum was taken in July 1979, when the system had a visual brightness of 11.3 magnitudes. The following two IUE observations in November 1980 revealed TT Ari in the lowest optical state (V = 14m.3) observed so far. The fourth spectrum was obtained during the rise to maximum in January 1981, when the system had an apparent magnitude of V = 11m.8. From this behavior, Krautter et al. (1981) concluded that TT Ari is a dwarf nova with extremely extended standstills as they are typical for Z Cam stars.


1998 ◽  
Vol 15 (4) ◽  
pp. 643-651 ◽  
Author(s):  
JEFFRY I. FASICK ◽  
THOMAS W. CRONIN ◽  
DAVID M. HUNT ◽  
PHYLLIS R. ROBINSON

To assess the dolphin's capacity for color vision and determine the absorption maxima of the dolphin visual pigments, we have cloned and expressed the dolphin opsin genes. On the basis of sequence homology with other mammalian opsins, a dolphin rod and long-wavelength sensitive (LWS) cone opsin cDNAs were identified. Both dolphin opsin cDNAs were expressed in mammalian COS-7 cells. The resulting proteins were reconstituted with the chromophore 11-cis-retinal resulting in functional pigments with absorption maxima (λmax) of 488 and 524 nm for the rod and cone pigments respectively. These λmax values are considerably blue shifted compared to those of many terrestrial mammals. Although the dolphin possesses a gene homologous to other mammalian short-wavelength sensitive (SWS) opsins, it is not expressed in vivo and has accumulated a number of deletions, including a frame-shift mutation at nucleotide position 31. The dolphin therefore lacks the common dichromatic form of color vision typical of most terrestrial mammals.


2019 ◽  
Vol 19 (3) ◽  
pp. 226-229
Author(s):  
S.D. Bardasevska ◽  
I.M. Budzulyak ◽  
S.I. Budzulyak ◽  
B.I. Rachiy ◽  
R.V. Ilnytskyi ◽  
...  

The proposed method of synthesis of CQDs on the basis of nanoporous carbon obtained from plant raw materials. It is established that in the short-wave region a band is registered, which is due to the exciton mechanism of recombination, whereas in the long-wavelength region it is related to the state of defects. The kinetics of PL extinction is not strictly exponential, which most likely indicates the distributed nature of fading from individual emitters.


2007 ◽  
Vol 85 (4) ◽  
pp. 584-587 ◽  
Author(s):  
A.J. Sillman ◽  
E.K. Ong ◽  
E.R. Loew

Lake sturgeon ( Acipenser fulvescens Rafinesque, 1817) photoreceptors were studied with scanning electron microscopy and microspectrophotometry. The retina contains both rods and cones, with cones estimated composing about 30% of the photoreceptor population. Only large single cones were identified and they are similar to those found in other species of the order Acipenseriformes. The rods are large, with long, broad outer segments, and are similar to the dominant rod found in other sturgeons and the North American paddlefish ( Polyodon spathula (Walbaum, 1792)). Mean (SD) rod packing density at 22 624 ± 3 509 rods/mm2 is low compared with those of other animals that function primarily in dim light. The visual pigment of the rods has a mean (SD) peak absorbance (λmax) at 541 ± 2 nm. Three different cone populations were identified: a long wavelength sensitive cone containing a visual pigment with λmax at 619 ± 3 nm; middle wavelength sensitive cone with λmax at 538 ± 1 nm; and short wavelength sensitive cone with λmax at 448 ± 1 nm. All the visual pigments are based on the vitamin A2 chromophore.


Sign in / Sign up

Export Citation Format

Share Document