scholarly journals An FPGA-based network system with service-uninterrupted remote functional update

Author(s):  
Tze Hon Tan ◽  
Chia Yee Ooi ◽  
Muhammad Nadzir Marsono

The recent emergence of 5G network enables mass wireless sensors deployment for internet-of-things (IoT) applications. In many cases, IoT sensors in monitoring and data collection applications are required to operate continuously and active at all time (24/7) to ensure all data are sampled without loss. Field-programmable gate array (FPGA)-based systems exhibit a balanced processing throughput and datapath flexibility. Specifically, datapath flexibility is acquired from the FPGA-based system architecture that supports dynamic partial reconfiguration feature. However, device functional update can cause interruption to the application servicing, especially in an FPGA-based system. This paper presents a standalone FPGA-based system architecture that allows remote functional update without causing service interruption by adopting a redundancy mechanism in the application datapath. By utilizing dynamic partial reconfiguration, only the updating datapath is temporarily inactive while the rest of the circuitry, including the redundant datapath, remain active. Hence, there is no service interruption and downtime when a remote functional update takes place due to the existence of redundant application datapath, which is critical for network and communication systems. The proposed architecture has a significant impact for application in FPGA-based systems that have little or no tolerance in service interruption.

2011 ◽  
Vol 2011 ◽  
pp. 1-25 ◽  
Author(s):  
R. Al-Haddad ◽  
R. Oreifej ◽  
R. A. Ashraf ◽  
R. F. DeMara

As reconfigurable devices' capacities and the complexity of applications that use them increase, the need forself-relianceof deployed systems becomes increasingly prominent. Organic computing paradigms have been proposed for fault-tolerant systems because they promote behaviors that allow complex digital systems to adapt and survive in demanding environments. In this paper, we develop asustainable modular adaptive redundancy technique (SMART)composed of a two-layered organic system. The hardware layer is implemented on a XilinxVirtex-4Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach calledreconfigurable adaptive redundancy system (RARS). The software layer supervises the organic activities on the FPGA and extends the self-healing capabilities through application-independent, intrinsic, and evolutionary repair techniques that leverage the benefits of dynamic partial reconfiguration (PR). SMART was evaluated using a Sobel edge-detection application and was shown to tolerate stressful sequences of injected transient and permanent faults while reducing dynamic power consumption by 30% compared to conventionaltriple modular redundancy (TMR)techniques, with nominal impact on the fault-tolerance capabilities. Moreover, PR is employed to keep the system on line while under repair and also to reduce repair time. Experiments have shown a 27.48% decrease in repair time when PR is employed compared to the full bitstream configuration case.


Author(s):  
Wei-Wen Lin ◽  
Jih-Sheng Shen ◽  
Pao-Ann Hsiung

With the progress of technology, more and more intellectual properties (IPs) can be integrated into one single chip. The performance bottleneck has shifted from the computation in individual IPs to the communication among IPs. A Network-on-Chip (NoC) was proposed to provide high scalability and parallel communication. An ASIC-implemented NoC lacks flexibility and has a high non-recurring engineering (NRE) cost. As an alternative, we can implement an NoC in a Field Programmable Gate Arrays (FPGA). In addition, FPGA devices can support dynamic partial reconfiguration such that the hardware circuits can be configured into an FPGA at run time when necessary, without interfering hardware circuits that are already running. Such an FPGA-based NoC, namely reconfigurable NoC (RNoC), is more flexible and the NRE cost of FPGA-based NoC is also much lower than that of an ASIC-based NoC. Because of dynamic partial reconfiguration, there are several issues in the RNoC design. We focus on how communication between hardware and software can be made efficient for RNoC. We implement three communication architectures for RNoC namely single output FIFO-based architecture, multiple output FIFO-based architecture, and shared memory-based architecture. The average communication memory overhead is less on the single output FIFO-based architecture and the shared memory-based architecture than on the multiple output FIFO-based architecture when the lifetime interval is smaller than 0.5. In the performance analysis, some real applications are applied. Real application examples show that performance of the multiple output FIFO-based architecture is more efficient by as much as 1.789 times than the performance of the single output FIFO-based architecture. The performance of the shared memory-based architecture is more efficient by as much as 1.748 times than the performance of the single output FIFO-based architecture.


Author(s):  
Noopur Astik

Dynamic partial reconfiguration has evolved as a very prominent state of art for efficient area utilization of <em>Field Programmable Gate Array</em> (FPGA) as well as significant reduction in its overall power consumption when properly used to lessen the idle logic on FPGA. It provides desired results even as the computational complexity increases in the field of Digital Signal Processing. This paper explains Dynamic Partial Reconfiguration (DPR) with an example of Finite Impulse response (FIR) filter of order 10. Initially RTL coding for Direct Form FIR structure is written in Verilog in fixed point format for low pass and high pass filter modules using ISE Design suite. Functioning of the both the modules is verified individually through hardware co-simulation on ZYBO (Zynq Board) from Digilent using Black Box from System Generator. Finally dynamic partial reconfigurable FIR filter with low pass and high pass as reconfigurable modules is implemented on ZYBO using PlanAhead tool. Final comparison of resource utilization with and without DPR is presented


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Hanaa M. Hussain ◽  
Khaled Benkrid ◽  
Ali Ebrahim ◽  
Ahmet T. Erdogan ◽  
Huseyin Seker

K-means clustering has been widely used in processing large datasets in many fields of studies. Advancement in many data collection techniques has been generating enormous amounts of data, leaving scientists with the challenging task of processing them. Using General Purpose Processors (GPPs) to process large datasets may take a long time; therefore many acceleration methods have been proposed in the literature to speed up the processing of such large datasets. In this work, a parameterized implementation of the K-means clustering algorithm in Field Programmable Gate Array (FPGA) is presented and compared with previous FPGA implementation as well as recent implementations on Graphics Processing Units (GPUs) and GPPs. The proposed FPGA has higher performance in terms of speedup over previous GPP and GPU implementations (two orders and one order of magnitude, resp.). In addition, the FPGA implementation is more energy efficient than GPP and GPU (615x and 31x, resp.). Furthermore, three novel implementations of the K-means clustering based on dynamic partial reconfiguration (DPR) are presented offering high degree of flexibility to dynamically reconfigure the FPGA. The DPR implementations achieved speedups in reconfiguration time between 4x to 15x.


Author(s):  
Islam Ahmed ◽  
Ahmed Nader Mohieldin ◽  
Hassan Mostafa

Dynamic Partial Reconfiguration (DPR) on Field Programmable Gate Arrays (FPGAs) allows reconfiguration of some of the logic at runtime while the rest of the logic keeps operating. This feature allows the designers to build complex systems such as Software-Defined Radio (SDR) in a reasonable area. New issues can arise due to usage of DPR technique such as guaranteeing proper connections for the ports of the Reconfigurable Modules (RMs) which share the same Reconfigurable Region (RR) on the FPGA, waiting for running computations on a module before reconfiguring it, isolation of the reconfigurable modules during the reconfiguration process, and initialization of the reconfigurable module after the reconfiguration process is done. Also, the Clock Domain Crossing (CDC) verification of the dynamically reconfigurable systems is a complicated task due to the need to verify all the modes of the designs, and the lack of Computer Aided Design (CAD) tools support for DRS designs. This paper summarizes our previous work to address these verification challenges for DPR. The approaches are demonstrated on a SDR system to show the effectiveness of applying these approaches in the design cycle.


Sign in / Sign up

Export Citation Format

Share Document