scholarly journals Building Fault Tollrence within Clouds at Network Level

Author(s):  
Sastry Kodanda Rama Jammalamadaka ◽  
Kamesh Bala Krishna Duvvuri ◽  
Devi Anusha CH ◽  
Padmini P ◽  
Siva Anjaneyulu G

<span>Cloud computing technologies and infrastructure facilities are coming up in a big way making it cost effective for the users to implement their IT based solutions to run business in most cost-effective and economical way. Many intricate issues however, have cropped-up which must be addressed to be able to use clouds the purpose for which they are designed and implemented. Among all, fault tolerance and securing the data stored on the clouds takes most of the importance. Continuous availability of the services is dependent on many factors. Faults bound to happen within a network, software, and platform or within the infrastructure which are all used for establishing the cloud. The network that connects various servers, devices, peripherals etc., have to be fault tolerant to start-with so that intended and un-interrupted services to the user can be made available. A novel network design method that leads to achieve high availability of the network and thereby the cloud itself has been presented in this paper</span>

Author(s):  
Sastry Kodanda Rama Jammalamadaka ◽  
Kamesh Bala Krishna Duvvuri ◽  
Devi Anusha CH ◽  
Padmini P ◽  
Siva Anjaneyulu G

<span>Cloud computing technologies and infrastructure facilities are coming up in a big way making it cost effective for the users to implement their IT based solutions to run business in most cost-effective and economical way. Many intricate issues however, have cropped-up which must be addressed to be able to use clouds the purpose for which they are designed and implemented. Among all, fault tolerance and securing the data stored on the clouds takes most of the importance. Continuous availability of the services is dependent on many factors. Faults bound to happen within a network, software, and platform or within the infrastructure which are all used for establishing the cloud. The network that connects various servers, devices, peripherals etc., have to be fault tolerant to start-with so that intended and un-interrupted services to the user can be made available. A novel network design method that leads to achieve high availability of the network and thereby the cloud itself has been presented in this paper</span>


Author(s):  
K Echtle ◽  
I Eusgeld ◽  
D Hirsch

This paper presents a new approach to the multiobjective design of fault-tolerant systems. The design objectives are fault tolerance and cost. Reducing the cost is of particular importance for fault-tolerant systems because the overhead caused by redundant components is considerable. The new design method consists of a special genetic algorithm that is tailored to the particular issues of fault-tolerant systems. The interface of the present tool ePADuGA (elitist and Pareto-based Approach to Design fault-tolerant systems using a Genetic Algorithm) allows for adaptation to various fields of application. The degree of fault tolerance is measured by the number of tolerated faults rather than traditional reliability metrics, because reliability numbers are mostly unknown during early design phases. The special features of the genetic algorithm comprise a graph-oriented representation of systems (which are the individuals during the evolutionary process), a simple yet expressive fault model, a very efficient procedure for fault-tolerance evaluation, and a Pareto-oriented fitness function. In a genetic algorithm generating thousands of individuals, a very fast evaluation of each individual is mandatory. For this purpose, state-space-oriented evaluation methods have been cut down to an extremely simple function which is still sufficient to assess the fault tolerance of individuals. An innovative aspect is also a multistart technique to find a Pareto solution set, which is independent of any parameters. In this paper, experimental results are presented showing the feasibility of the approach as well as the usefulness of the final fault-tolerant architectures, particularly in the field of mechatronic systems.


2000 ◽  
Vol 01 (04) ◽  
pp. 315-329 ◽  
Author(s):  
PETER KOK KEONG LOH ◽  
WEN JING HSU

Hierarchical interconnection networks with n-dimensional hypercube clusters can strike a balance between wide application suitability, size scalability as well as reliability. Cluster communications support for such networks must therefore be reliable and efficient without incurring large overheads. This paper proposes a reliable and cost-effective intra-cluster communications strategy for such a class of interconnection networks. The routing algorithm can tolerate up to (n - 1) component faults in the cluster and generates routes that are cycle-free and livelock-free. The message is guaranteed to be optimally (respectively, sub-optimally) delivered within a maximum of n (respectively, 2n - 1) hops. The message overhead incurred is one of the lowest reported for the specified fault tolerance level – with only a single n-bit routing vector accompanying the message to be communicated. Finally, routing hardware support may be simply achieved with standard components, facilitating integration with the host network.


Author(s):  
Piyush Kumar Shukla ◽  
Gaurav Singh

In this chapter we are focusing on reliability, fault tolerance and quality of service in cloud computing. The flexible and scalable property of dynamically fetching and relinquishing computing resources in a cost-effective and device-independent manner with minimal management effort or service provider interaction the demand for Cloud computing paradigm has increased dramatically in last few years. Though lots of enhancement took place, cloud computing paradigm is still subject to a large number of system failures. As a result, there is an increasing concern among community regarding the reliability and availability of Cloud computing services. Dynamically provisioning of resources allows cloud computing environment to meet casually varying resource and service requirements of cloud customer applications. Quality of Service (QoS) plays an important role in the affective allocation of resources and has been widely investigated in the Cloud Computing paradigm.


Author(s):  
Ghalem Belalem ◽  
Said Limam

Cloud computing refers to both the applications delivered as services over the Internet and the hardware and systems software in the datacenters that provide those services. Failures of any type are common in current datacenters, partly due to the number of nodes. Fault tolerance has become a major task for computer engineers and software developers because the occurrence of faults increases the cost of using resources and to meet the user expectations, the most fundamental user expectation is, of course, that his or her application correctly finishes independent of faults in the node. This paper proposes a fault tolerant architecture to Cloud Computing that uses an adaptive Checkpoint mechanism to assure that a task running can correctly finish in spite of faults in the nodes in which it is running. The proposed fault tolerant architecture is simultaneously transparent and scalable.


Author(s):  
Rosangela Melo ◽  
Vicente Sobrinho ◽  
Ivanildo Filho ◽  
Fábio Feliciano ◽  
Paulo Maciel

Cloud computing offer IT services to the users worldwide based on pay-as-you-go model. Furthermore, architectures and services that are provided by cloud computing system must have high availability, scalability, security and furthermore be fault tolerant. Plan these environments is not an easy task, it is necessary to ensure that undesirable situations or errors do not occur or can be minimized. The use of Sensitivity Analysis combined with the use of modeling hierarchy and the study of models for representing redundancy mechanisms arise in order to investigate the possible changes that these systems suffer and identify their shortcomings and propose improvements solutions for the planning of these systems. The use of redundancy techniques has been used to improve availability. In this work the redundancy mechanisms is a solution to improve the performance of environments in cloud computing.


Author(s):  
Sam Goundar ◽  
Akashdeep Bhardwaj

With mission critical web applications and resources being hosted on cloud environments, and cloud services growing fast, the need for having greater level of service assurance regarding fault tolerance for availability and reliability has increased. The high priority now is ensuring a fault tolerant environment that can keep the systems up and running. To minimize the impact of downtime or accessibility failure due to systems, network devices or hardware, the expectations are that such failures need to be anticipated and handled proactively in fast, intelligent way. This article discusses the fault tolerance system for cloud computing environments, analyzes whether this is effective for Cloud environments.


2022 ◽  
pp. 320-339
Author(s):  
Aydin Abadi

Cloud computing offers clients flexible and cost-effective resources. Nevertheless, past incidents indicate that the cloud may misbehave by exposing or tampering with clients' data. Therefore, it is vital for clients to protect the confidentiality and integrity of their outsourced data. To address these issues, researchers proposed cryptographic protocols called “proof of storage” that let a client efficiently verify the integrity or availability of its data stored in a remote cloud server. However, in these schemes, the client either has to be online to perform the verification itself or has to delegate the verification to a fully trusted auditor. In this chapter, a new scheme is proposed that lets the client distribute its data replicas among multiple cloud servers to achieve high availability without the need for the client to be online for the verification and without a trusted auditor's involvement. The new scheme is mainly based on blockchain smart contracts. It illustrates how a combination of cloud computing and blockchain technology can resolve real-world problems.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050240
Author(s):  
Vahid Mohammadian ◽  
Nima Jafari Navimipour ◽  
Mehdi Hosseinzadeh ◽  
Aso Darwesh

Providing dynamic resources is based on the virtualization features of the cloud environment. Cloud computing as an emerging technology uses a high availability of services at any time, in any place and independent of the hardware. However, fault tolerance is one of the main problems and challenges in cloud computing. This subject has an important effect on cloud computing, but, as far as we know, there is not a comprehensive and systematic study in this field. Accordingly, in this paper, the existing methods and mechanisms are discussed in different groups, such as proactive and reactive, types of fault detection, etc. Various fault tolerance techniques are provided and discussed. The advantages and disadvantages of these techniques are shown on the basis of the technology that they have used. Generally, the contributions of this research provide a summary of the available challenges associated with fault tolerance, a description of several important fault tolerance methods in the cloud computing and the key regions for the betterment of fault tolerance techniques in the future works. The advantages and disadvantages of the selected articles in each category are also highlighted and their significant challenges are discussed to provide the research lines for further studies.


Sign in / Sign up

Export Citation Format

Share Document