scholarly journals Design of gas concentration measurement and monitoring system for biogas power plant

Author(s):  
Iswanto Iswanto ◽  
Alfian Ma’arif ◽  
Bilah Kebenaran ◽  
Prisma Megantoro

Biogas is a gas obtained from the breakdown of organic matter (such as animal waste, human waste, and plants) by methanogenic bacteria in an oxygen-free (anaerobic) state. The biogas produced mainly consists of 50-70% methane, 30-40% carbon dioxide, and other gases in small amounts. The gas produced has a different composition depending on the type of animal that produces it. It is challenging to obtain biogas concentration data because the monitoring equipment is currently minimal. Therefore, this research discusses how to make a monitoring system for biogas reactors. Sensors are installed in the digester tank and storage tank. The installed sensors are the MQ-4 sensor to detect methane gas (CH<sub>4</sub>), MG-811 sensor to detect carbon dioxide (CO<sub>2</sub>) gas, MQ-136 sensor to detect sulfide acid gas (H<sub>2</sub>S), and Thermocouple Type-K to detect temperature. The sensor will send a signal to the control unit in Arduino Mega 2560, then processed and displayed on the liquid crystal display (LCD). The sensor calculation results' accuracy is not much different from the reference based on the sensor readings. The sensor deviation standard is below 5.0, indicating that the sensor is in precision. The sensor's linearity of MQ-4 is 0.7%, the MG-811 is 0.17%, the MQ-136 is 0.29%, and the Type-K Thermocouple is 1.19%. The installed sensor can be used to monitor gas concentration and temperature in a biogas reactor.

2014 ◽  
Vol 1073-1076 ◽  
pp. 2173-2176 ◽  
Author(s):  
Hui Chun Gao ◽  
Chao Jun Fan ◽  
Jun Wen Li ◽  
Ming Kun Luo

Aimed at the frequency gas accident of coal mine, we designed a coal mine gas monitoring system based on Arduino microcontroller. The MQ-4 gas sensor was used to collect gas concentration, wireless ZigBee was used to transfer data of gas concentration to PC. The system can display gas concentration real-timely by LCD and use SD card to store the data. The system will send out sound and light alarm when the gas concentration overruns. Industrial tests have been carried out in Wuyang coal mine. Results show that gas monitoring system can well adapt to environment of underground coal mine and the measurement is accurate. The system is real-time monitoring and early warning. It has the characteristics of low power consumption, low cost, wireless, good market prospect.


2012 ◽  
Vol 546-547 ◽  
pp. 1483-1488
Author(s):  
Shu Ren Han ◽  
Jun Wang ◽  
Ling Liang ◽  
Xian Peng Liu

In the safety production of coal mine, monitoring exact and real-time mine parameter is very important and key problem. The monitoring system of mine environment with wireless is designed, which is based on the structure of wireless sensor network (WSN).The system includes sensor node, Sink node and monitoring center. In the paper, the function structure and hardware design of sensor are introduced for the monitoring of temperature, humidity and gas concentration, and the function structure and hardware design of sink node is designed. The system has low power, rapid real-timing, stable running. Etc. This can satisfy with the requirement of WSN and suit the monitoring of bad environments. It will have wide application prospect.


Author(s):  
L.P.S.S.K. Dayananda ◽  
A. Narmilan ◽  
P. Pirapuraj

Background: Weather monitoring is an important aspect of crop cultivation for reducing economic loss while increasing productivity. Weather is the combination of current meteorological components, such as temperature, wind direction and speed, amount and kind of precipitation, sunshine hours and so on. The weather defines a time span ranging from a few hours to several days. The periodic or continuous surveillance or the analysis of the status of the atmosphere and the climate, including parameters such as temperature, moisture, wind velocity and barometric pressure, is known as weather monitoring. Because of the increased usage of the internet, weather monitoring has been upgraded to smart weather monitoring. The Internet of Things (IoT) is one of the new technology that can help with many precision farming operations. Smart weather monitoring is one of the precision agriculture technologies that use sensors to monitor correct weather. The main objective of the research is to design a smart weather monitoring and real-time alert system to overcome the issue of monitoring weather conditions in agricultural farms in order for farmers to make better decisions. Methods: Different sensors were used in this study to detect temperature and humidity, pressure, rain, light intensity, CO2 level, wind speed and direction in an agricultural farm and real time clock sensor was used to measured real time weather data. The major component of this system was an Arduino Uno microcontroller and the system ran according to a program written in the Arduino Uno software. Result: This is a low-cost smart weather monitoring system. This system’s output unit were a liquid crystal display and a GSM900A module. The weather data was displayed on a liquid crystal display and the GSM900A module was used to send the data to a mobile phone. This smart weather station was used to monitor real-time weather conditions while sending weather information to the farmer’s mobile phone, allowing him to make better decisions to increase yield.


Author(s):  
A. M. Teliatnikova ◽  
◽  
S. V. Fedorov ◽  
M. I. Alekseev ◽  
◽  
...  

The article deals with the problem of the negative impact of sewage gases on the sanitary and environmental conditions of the urban environment. There was performed monitoring of gases at a section of the sewer network with three observation wells as the most common type of structures. To control gas concentration, measuring equipment was installed in the wells for twenty four hours. According to the results of the survey, there was established the presence of methane and an increased content of carbon dioxide in the system. Also, a one-shot measurement of gas concentration in the environment near the wells was carried out. Based on the monitoring results at the observation wells, a low potential of the air pollution has been identified.


2020 ◽  
Vol 17 (9) ◽  
pp. 2487-2498 ◽  
Author(s):  
Marcus B. Wallin ◽  
Joachim Audet ◽  
Mike Peacock ◽  
Erik Sahlée ◽  
Mattias Winterdahl

Abstract. Headwater streams are known to be hotspots for carbon dioxide (CO2) emissions to the atmosphere and are hence important components in landscape carbon balances. However, surprisingly little is known about stream CO2 dynamics and emissions in agricultural settings, a land use type that globally covers ca. 40 % of the continental area. Here we present hourly measured in situ stream CO2 concentration data from a 11.3 km2 temperate agricultural headwater catchment covering more than 1 year (in total 339 d excluding periods of ice and snow cover). The stream CO2 concentrations during the entire study period were generally high (median 3.44 mg C L−1, corresponding to partial pressures (pCO2) of 4778 µatm) but were also highly variable (IQR = 3.26 mg C L−1). The CO2 concentration dynamics covered a variety of different timescales from seasonal to hourly, with an interplay of hydrological and biological controls. The hydrological control was strong (although with both positive and negative influences dependent on season), and CO2 concentrations changed rapidly in response to rainfall and snowmelt events. However, during growing-season base flow and receding flow conditions, aquatic primary production seemed to control the stream CO2 dynamics, resulting in elevated diel patterns. During the dry summer period, rapid rewetting following precipitation events generated high CO2 pulses exceeding the overall median level of stream CO2 (up to 3 times higher) observed during the whole study period. This finding highlights the importance of stream intermittency and its effect on stream CO2 dynamics. Given the observed high levels of CO2 and its temporally variable nature, agricultural streams clearly need more attention in order to understand and incorporate these considerable dynamics in large-scale extrapolations.


2013 ◽  
Vol 19 (3) ◽  
pp. 389-398 ◽  
Author(s):  
Hadi Baseri ◽  
Ali Haghighi-Asl ◽  
Nader Lotfollahi

In this paper, Peng Robinson equation of state is used for thermodynamic modeling of the solubility of various solid components in the supercritical carbon dioxide. Moreover, the effects of three mixing rules of Van der Waals mixing rules, Panagiotopoulos and Reid mixing rules and modified Kwak and Mansoori mixing rules on the accuracy of calculation results were studied. Good correlations between calculated and experimental data were obtained in the wide temperature and pressure range. A comparison between used models shows that modified Kwak and Mansoori mixing rules give better correlations in comparison with the other mixing rules.


2014 ◽  
Vol 541-542 ◽  
pp. 1276-1280
Author(s):  
Dong Jiang Li ◽  
Zhi Hong Li ◽  
Jun Hao Yu ◽  
Xiao Yan Lou

Nowadays, the short of water resource has been a problem. To make the use of water resource more effectively, especially the underground water, we designed the IC card paid water wells Remote Monitoring System. The system consists of 3 parts--water wells terminal control unit, the data transmission network and supervisory and trade center. The process includes hardware design and software design. The core point consists of the IC card reading and writing processes and RS485 multi-device communication using MODBUS protocol. After testing, the basic function is completed, and it will be in the future having broad prospects for development in many fields.


2018 ◽  
Vol 227 ◽  
pp. 02008
Author(s):  
Qing Du ◽  
Yanhua Miao ◽  
Yunhui Zhang

In view of the problem that some chicken farms are susceptible to various bacteria and viruses due to poor breeding environment, this paper designs a chicken house environmental intelligent monitoring system based on single-chip microcomputer application to improve the chicken house environment. The system adopts STC89C52 single-chip microcomputer as the main control chip. The sensor collects information on the light intensity, temperature and humidity, and carbon dioxide concentration, and controls the exhaust fan and the illumination lamp, and the environmental parameters can be displayed on the display in real time.


2011 ◽  
Vol 354-355 ◽  
pp. 938-942
Author(s):  
Yan Gao ◽  
Bao Quan Jin

The communication method of the automatically drainage monitoring system for underground coal mine is researched. The advanced PLC control technology and visual InTouch human-machine interface are used to design the control system. The information which is measured by downhole monitoring device can be real-timely transmitted to the ground monitoring stations through the Ethernet optical fiber communication system.The monitoring system can realize on-site manual and automatic control, also can realize remote monitoring and management.This paper mainly describes the implementation process and implementation principle of the data transfer between control unit and remote host computer via Ethernet technology.


Sign in / Sign up

Export Citation Format

Share Document