scholarly journals A series-connected switched source and an H-bridge based multilevel inverter

Author(s):  
Siva Pachipala ◽  
Amarsrinadh Guda ◽  
Mentimi Sandeep Babu ◽  
Veeranarayana B. ◽  
K. V. S. Ramachandra Murthy ◽  
...  

An inverter circuit is promoted in this paper, using series-connected switched dc sources along with an H-bridge circuit with optimized circuit elements like switching devices and diode clamped (DC) sources. This configuration uses DC supplies that can be strung together in series to create a significant voltage level. This topology consists of two parts, namely: 1) level production part and 2) polarity production part. The combination of some of the dc sources and switching devices completes the level production part. The H-bridge in the presented structure produces the polarity generation part. The DC-link capacitors are not needed in this design. There is a full presentation of the operating modes and modeling process of the proposed converter. Finally, in the MATLAB/SIMULINK setting the proposed topology is simulated and output current and voltage results have been examined.

2021 ◽  
Vol 10 (6) ◽  
pp. 2964-2971
Author(s):  
Sai Divya Sindhura Nunna ◽  
Akhilesh Ketha ◽  
Srivastav Sai Goud Padamat ◽  
K. Rambabu ◽  
Ujwala Anil Kshirsagar ◽  
...  

This paper introduces a simplified inverter circuit using a single dc source and an H-bridge with a least possible number of “switching devices”. This topology does not employ multiple “dc sources”, which enhances the reliability of the configuration. The topology consists of two parts, namely: “Level generation parts” as well as “Polarity generation parts”, it is the mixture of some of the switching devices, DC-link capacitor and a single DC source completes the part of level generation. The H-bridge in the proposed structure produces the polarity generation part. A detailed explanation of the modulation system and operating modes of the proposed framework are discussed. Finally, in the MATLAB/SIMULINK platform, the projected network topology is simulated and the outcomes are presented.


2021 ◽  
pp. 74-83
Author(s):  
YURI D. VOLCHKOV ◽  

Abstract. The load current aff ects the value of the short-circuit current in the electric network and, consequently, the voltage value. In some cases, this infl uence must be taken into account for the correct choice of switching devices, remote monitoring the operating modes of electric networks, and determining the modes. It is possible to disconnect loads connected through magnetic starters and contactors. Failure to consider the infl uence of the load current can lead to an incorrect interpretation of the identifi ed grid operating modes during remote monitoring and, as a result, incorrect dispatcher’s decisions. In addition, it is also insuffi cient to specify the choice of switching devices in the 10 kV feed network. The article describes a method for analyzing the three-phase short circuit mode in a 10 kV feed network, taking into account the infl uence of load currents. The method is exemplifi ed by the case of an actual electric network – the 10 kV ring feed network containing reclosers and receiving power from diff erent sections of lowvoltage buses of the “Kulikovskaya” 110/35/10 kV substation, belonging to the Branch of PJSC «DGC of Center”-“Orelenergo.” For this network, the values of the three-phase short-circuit currents at points with diff erent distances from the substation buses have been determined. The authors have fi guredout the values of the load currents and their shares in the total short-circuit current. The voltage values at different points of the network in the case of short circuits have also been determined. The research proves that the effect of the load current on the total short-circuit current should be taken into account for the case of remote short circuits.


Author(s):  
R. Palanisamy ◽  
K. Vijayakumar ◽  
Aishwarya Bagchi ◽  
Vachika Gupta ◽  
Swapnil Sinha

<p>This paper proposes implementation of coupled inductor based 7 level inverter with reduced number switches. The inverter which generates the sinusoidal output voltage by the use of coupled inductor with reduced total harmonic distortion. The voltage stress on each switching devices, capacitor balancing and common mode voltage can be minimized. The proposed system which gives better controlled output current and improved output voltage with diminished THD value. The switching devices of the system are controlled by using hysteresis current control algorithm by comparing the carrier signals with constant pulses with enclosed hysteresis band value. The simulation and experimental results of the proposed system outputs are verified using matlab/Simulink and TMS320F3825 dsp controller respectively.</p>


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Aparna Prayag ◽  
Sanjay Bodkhe

In this paper a basic block of novel topology of multilevel inverter is proposed. The proposed approach significantly requires reduced number of dc voltage sources and power switches to attain maximum number of output voltage levels. By connecting basic blocks in series a cascaded multilevel topology is developed. Each block itself is also a multilevel inverter. Analysis of proposed topology is carried out in symmetric as well as asymmetric operating modes. The topology is investigated through computer simulation using MATLAB/Simulink and validated experimentally on prototype in the laboratory.


Author(s):  
Suroso Suroso ◽  
Winasis Winasis ◽  
Priswanto Priswanto ◽  
Sholikhah Sholikhah

Current source inverter (CSI) operates to output a specified ac current waveform from dc current sources. Talking about power quality, harmonics distortion of ac waveform is a problem of an inverter circuit. Generating a multilevel current waveform will have less harmonics content than a traditional three-level current waveform. In addition to non-ideal conditions of power switches, i.e. voltage drop in diodes, conductors or controlled switches, the performance of current controller applied in an inverter circuit will considerably affect the ac waveform quality produced by inverter circuit. This paper presents and discusses application of hysteresis current controller in the five-level H-bridge with inductor-cell current source inverter. The current controller performance was compared with the proportional integral current controller. Some test results are presented and discussed to explore the advantages of hysteresis controller in reducing the current ripple and harmonics distortion of output current.


Author(s):  
Peiman Naseradinmousavi ◽  
Mostafa Bagheri ◽  
C. Nataraj

In this paper, we focus on interconnected trajectory optimization of two sets of solenoid actuated butterfly valves dynamically coupled in series. The system undergoes different approach angles of a pipe contraction as a typical profile of the so-called “Smart Valves” network containing tens of actuated valves. A high fidelity interconnected mathematical modeling process is derived to reveal the expected complexity of such a multiphysics system dealing with electromagnetics, fluid mechanics, and nonlinear dynamic effects. A coupled operational optimization scheme is formulated in order to seek the most efficient trajectories of the interconnected valves minimizing the energy consumed enforcing stability and physical constraints. We examine various global optimization methods including Particle Swarm, Simulated Annealing, Genetic, and Gradient based algorithms to avoid being trapped in several possible local minima. The effect of the approach angles of the pipeline contraction on the amount of energy saved is discussed in detail. The results indicate that a substantial amount of energy can be saved by an intelligent operation that uses flow torques to augment the closing efforts.


Author(s):  
Wu Chuan ◽  
Huang He ◽  
Yang Shuo ◽  
Fan Chenxing

Drill string vibration during the drilling must be measured in real-time as it will cause damage to the construction. This paper proposed a self-powered downhole vibration sensor based on the triboelectric nanogenerator. The downhole vibration sensor relies on the drill string vibration to induce triboelectric charge and electrostatic induction of nanomaterials, thereby realizing self-powered vibration measurement. Sensing performance test results show that the measurement range is between 0 to 5 Hz, the measurement error does not exceed 3.5%, and the output voltage amplitude with a range of 2 V to 5.5 V decreases with the increases of vibration frequency. Self-powered performance test results show that the output current can reach a maximum value of about 35 × E−8 A when a 50 ohm resistance is connected in series, the output power can reach a maximum value of about 924.5 × E−12 W when a 20k ohm resistance is connected in series at a vibration frequency of 0.8 Hz, and the output current and power all decrease with the increase of the vibration frequency.


Author(s):  
Raphael Borges Nobrega ◽  
Valmir Nascimento Júnior ◽  
Ítalo Oliveira Medeiros ◽  
Edson Guedes Costa ◽  
Ronimack Trajano Souza

<p>This paper aimed at the design and development of a data acquisition and control system using the Arduino open-source platform to automate equipment responsible for the IEC 60587 electrical tracking and erosion test. The developed system allows the selection of protection resistors specified by the standard from the voltage value informed by the operator, monitoring of the leakage current flowing over five samples simultaneously tested and automatically interrupts the samples if the leakage current exceeds 60 mA for more than two seconds. The leakage current values are measured indirectly from the voltage drop across 50 Ω shunt resistors installed in series with each sample. The voltage values on the shunt resistors are conditioned by a measuring circuit that allows the voltage level to be adjusted to the analog inputs of the microcontroller, ie, between 0 V and 5 V. The microcontroller treatment performs the voltage signal obtained by the measuring circuit, the calculation of the RMS value of the current and stop criterion monitoring the leakage current. The calibration of the leakage current measurement circuit was performed by comparing voltage values measured by a digital oscilloscope for four different alternate waveforms and values up to 5 Vrms, corresponding to currents up to 100 mA. The results showed that the circuit provided measurements close to the values measured by the oscilloscope, with errors below 11%. For current values between 30 mA and 80 mA, the errors were less than 6%.</p>


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5057
Author(s):  
Cheng Luo ◽  
Xikui Ma ◽  
Lihui Yang ◽  
Yongming Li ◽  
Xiaoping Yang ◽  
...  

Under unbalanced grid voltage faults, the output power oscillation of a grid-connected inverter is an urgent problem to be solved. In the traditional topology of inverters, it is impossible to eliminate power oscillation and simultaneously maintain balanced output current waveform. In this paper, considering the solvability of reference current matrix equation, the inherent mechanism of inverter output power oscillation is analyzed, and a modified topology with auxiliary modules inserted in series between the inverter output filter and the point of common coupling (PCC) is proposed. Due to the extra controllable freedoms provided by auxiliary modules, the inverter could generate extra voltage to correct PCC voltage while keeping balance of output current, so as to eliminate the oscillation of output power. Simulation and experimental results verify the effectiveness of the proposed topology.


Sign in / Sign up

Export Citation Format

Share Document