scholarly journals MATLAB/Simulink based simulations of KY converter for PV panels powered LED lighting system

Author(s):  
Nithiyananthan Kannan ◽  
Nithiyananthan Kannan ◽  
Sunil Thomas

<p>The main objective of this research work is to develop KY conveter topology for renewable energy sources.Solar energy is the readily available and is the cheapest form of energy. It is non-polluting and environment friendly. The development of high static gain DC-DC converters is an important research area due to the crescent demand of this technology for several applications supplied by low DC output voltage power sources. It is used to provide the uninterruptable power supply and battery powered to the system. So here, step-up DC-DC converters based on the KY converter are proposed for LED lighting systems. The proposed topologies present high voltages and high efficiency for low input voltage and high output voltage applications. The simulation results of the proposed topology have been presented using MATLAB/SIMULINK software.</p>

Author(s):  
Simone Leeuw ◽  
◽  
Viranjay M. Srivastava

The traditional buck regulator provides the steady output voltage with high efficiency and low power dissipation. Various parameters of this regulator can be improved by the placement of Double-Gate (DG) MOSFET. The double-gate MOSFET provides twice the drain current flow, which improves the various parameters of buck regulator structure and inevitably increases the device performance and efficiency. In this research work, these parameters have been analyzed with implemented DG MOSFET buck regulator and realized the total losses 42.676 mW and efficiency 74.208%. This research work has designed a DG MOSFET based buck regulator with the specification of input voltage 12 V, output voltage 3.3 V, maximum output current 40 mA, switching frequency 100 kHz, ripple current of 10%, and ripple voltage of 1%.


2020 ◽  
Vol 91 (3) ◽  
pp. 31301
Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Meriem Boutaldat ◽  
Marwane Rouway ◽  
Adil Eddiai ◽  
...  

Novel textiles have received a lot of attention from researchers in the last decade due to some of their unique features. The introduction of intelligent materials into textile structures offers an opportunity to develop multifunctional textiles, such as sensing, reacting, conducting electricity and performing energy conversion operations. In this research work nanocomposite-based highly piezoelectric and electroactive β-phase new textile has been developed using the pad-dry-cure method. The deposition of poly (vinylidene fluoride) (PVDF) − carbon nanofillers (CNF) − tetraethyl orthosilicate (TEOS), Si(OCH2CH3)4 was acquired on a treated textile substrate using coating technique followed by evaporation to transform the passive (non-functional) textile into a dynamic textile with an enhanced piezoelectric β-phase. The aim of the study is the investigation of the impact the coating of textile via piezoelectric nanocomposites based PVDF-CNF (by optimizing piezoelectric crystalline phase). The chemical composition of CT/PVDF-CNC-TEOS textile was detected by qualitative elemental analysis (SEM/EDX). The added of 0.5% of CNF during the process provides material textiles with a piezoelectric β-phase of up to 50% has been measured by FTIR experiments. These results indicated that CNF has high efficiency in transforming the phase α introduced in the unloaded PVDF, to the β-phase in the case of nanocomposites. Consequently, this fabricated new textile exhibits glorious piezoelectric β-phase even with relatively low coating content of PVDF-CNF-TEOS. The study demonstrates that the pad-dry-cure method can potentially be used for the development of piezoelectric nanocomposite-coated wearable new textiles for sensors and energy harvesting applications. We believe that our study may inspire the research area for future advanced applications.


Author(s):  
G.Vijaykumar and Dr.V.Geetha

A high voltage gain modified SEPIC converter is proposed in this paper. This proposed converter has many advantages i.e., high output voltage, lower voltage stress, high efficiency, voltage gain is high without any coupled inductor and transformer, continuous input current. Thus, there is no overshoot voltage at turn-off process for switches. By using single switches, the CCM mode operation can be easily controlled by this converter, so control system is simple and also wide output values is obtained only by modifying the duty cycle. This modified converter has lower components than conventional converter. The operating modes and design of modified converter are discussed. The output power of this converter is 6 watts. By this converter, this converter capable of developing the two and half times of input voltage. The PV system also used this converter to develop high voltage gain. This high voltage gain is achieved by using MATLAB/SIMULIMK platform.


1998 ◽  
Vol 34 (1) ◽  
pp. 122 ◽  
Author(s):  
Y. Muramoto ◽  
K. Kato ◽  
M. Mitsuhara ◽  
O. Nakajima ◽  
Y. Matsuoka ◽  
...  

2013 ◽  
Vol 273 ◽  
pp. 399-403
Author(s):  
Xiao Yu Zhao ◽  
Cong Wang ◽  
Feng Yang ◽  
Su Ke Wang

A novel topology of isolated input-series and output-series (ISOS) full-bridge bidirectional DC/DC converter is described in this paper for the application requirement of high input voltage and high output voltage, which can be used in the next generation medium and high voltage power conversion systems. The proposed novel isolated bidirectional DC/DC converter not only can apparently decrease the stress of the switches, but also have the advantages, such as galvanic isolation, ease of realizing soft-switching control, high power density, and so on. In this paper, working principle of the proposed DC/DC converter is discussed in detail, the corresponding equations are derived, and the soft switching implementation is discussed too. In the end, simulation is done through PSIM to certify the feasibility of the proposed DC/DC converter and accuracy of the criterion.


2013 ◽  
Vol 690-693 ◽  
pp. 2906-2911
Author(s):  
Kang Song ◽  
Jun Bi Liao ◽  
Qian Yang

Ignition energy of aviation ignition equipment is an important parameter for reliable launch of air jet. The factors are quite more that influence ignition energy and increasing the charge voltage of capacitance with high efficiency is an approach which increasing ignition energy efficiently. The charge voltage is the output voltage of switching power of ignition device. A mathematic model was constructed for switching power, and a mathematic expression were deduced about output voltage uo with input voltage ui and other elements parameters of switching power supply. An important conclusion were obtained which uo mainly depended on input voltage ui, load RL, dynatron collector peak current ICM on certain condition through a smart transform. When increasing ui, RL, ICM , uo increasing observably. The PSpice circuit simulation software is used for simulation, and the results show that the above conclusion is valid and feasible.


2018 ◽  
Vol 197 ◽  
pp. 11018
Author(s):  
Muhammad Arif Wicaksono ◽  
Estananto Estananto

The current factory-generated inverters, typically use high power sources or energy sources, with a minimum input voltage of 12VDC, 24VDC, 48VDC with an effective voltage output of 220 VAC with a frequency of 50Hz/60Hz. These power sources are usually obtained from starting battery or deep-cycle battery. The problem of inverter currently that portable inverter using a low power source with a sine wave output is not available. So in this research conducted inverter design using power source/ energy source from powerbank 5 VDC 16000 mAh with 50 Hz 40 Vpp sine wave output. Inverter design method in this final project research based on simulation which used LTspice application. And in this inverter system, have been decided to using MOSFET as switching and using h-bridge as inverter topology, because MOSFET has high efficiency compared with BJT or J-FET. This final project research is expected to be an inverter using powerbank resources and become a portable inverter so in the future can be used for loads that require sinusoidal signals such as electric stoves, and can be used also for climbing purposes.


Sign in / Sign up

Export Citation Format

Share Document