scholarly journals A multilevel UPQC for voltage and current quality improvement in distribution system

Author(s):  
Varampati Veera Nagi Reddy ◽  
D.V Ashok Kumar ◽  
Venkata Reddy Kota

Unified Power Quality Conditioner (UPQC) is substantial power conditioner in power system to filter the power system parameters with an objective to improve the quality of power delivered to the customers/utility point. This paper presents a multi-level UPQC to enhance the quality in power distribution system. The series and shunt controllers of UPQC gives out five leveled output which is further filtered to feed compensating signals to improve voltage and current profiles in power distribution system. Series and shunt controllers of UPQC are structured with cascaded H-Bridge (CHB) topology to deliver compensating signals. Two separate control strategies are employed to regulate the power switches of 5-level CHB series and shunt controllers of UPQC. Sag and swell in source voltage and harmonics in source current are strained with UPQC. The proposed system is developed and results are obtained using MATLAB/SIMULINK software.

2019 ◽  
Vol 217 ◽  
pp. 01020 ◽  
Author(s):  
Margarita Chulyukova ◽  
Nikolai Voropai

The paper considers the possibilities of increasing the flexibility of power distribution systems by real-time load management. The principles of the implementation of special automatic systems for this purpose are proposed. These systems enable some loads of specific consumers of the power distribution system switched to islanded operation to “shift” from the daily maximum to the minimum, which makes some generators available to connect certain essential consumers disconnected earlier by under-frequency load shedding system to the power system. The approach under consideration is illustrated by a power system with distributed generation.


Author(s):  
Zuhaila Mat Yasin ◽  
Izni Nadhirah Sam’ón ◽  
Norziana Aminudin ◽  
Nur Ashida Salim ◽  
Hasmaini Mohamad

<p>Monitoring fault current is very important in power system protection. Therefore, the impact of installing Distributed Generation (DG) on the fault current is investigated in this paper. Three types of fault currents which are single line-to-ground, double line-to-ground and three phase fault are analyzed at various fault locations. The optimal location of DG was identified heuristically using power system simulation program for planning, design and analysis of distribution system (PSS/Adept). The simulation was conducted by observing the power losses of the test system by installing DG at each load buses. Bus with minimum power loss was chosen as the optimal location of DG. In order to study the impact of DG to the fault current, various locations and sizes of DG were also selected. The simulations were conducted on IEEE 33-bus distribution test system and IEEE 69-bus distribution test system. The results showed that the impact of DG to the fault current is significant especially when fault occurs at busses near to DG location.</p>


2013 ◽  
Vol 791-793 ◽  
pp. 1889-1891
Author(s):  
Yan Li Fan ◽  
Qing En Li

The low-voltage distribution system is the key component of the electrical power system. Some analysis and research of the low-voltage distribution system is carried out in this paper, which provides some scientific basis to design the low-voltage distribution system. Firstly, the summarize of low-voltage distribution system is taken. The influence to productions and livings of low-voltage distribution system is introduced. Secondly, the mode of connection and design philosophy of low-voltage distribution system is studied in detail, especially the high-rise buildings low-voltage distribution system is concluded and summarized.


Author(s):  
May Phone Thit

Nowadays, power quality is one of the major problems in electric power distribution system. The poor power quality at distribution level can affect the operation and performance of sensitive and critical loads. In the distribution systems, poor power quality results in various problems such as higher power losses, harmonics, sag and swells in the voltage, and poor power factor., etc. Unified Power Quality Conditioner (UPQC) is the only versatile device which can mitigate several power quality problems related with distribution system. A UPQC that combines the operations of a Distribution Static Compensator (D-STATCOM) and Dynamic Voltage Restorer (DVR) together with the shunt and series active control devices. UPQC can solve the problems related to the voltage/current harmonics, voltage sag/swell and unbalance in distribution system. To evaluate the performance improvement in the system, a model of UPQC is developed in MATLAB/SIMULINK with a typical distribution network. In this research, UPQC is applied for power quality enhancement of Myaungtagar industrial distribution substation, Myanmar. Enhancements in power quality by UPQC are evaluated under maximum load condition.Keywords—Power Quality, UPQC, Series Controller, Shunt controller, Harmonics


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4826
Author(s):  
Steffen Meinecke ◽  
Leon Thurner ◽  
Martin Braun

Publicly available grid datasets with electric steady-state equivalent circuit models are crucial for the development and comparison of a variety of power system simulation tools and algorithms. Such algorithms are essential to analyze and improve the integration of distributed energy resources (DERs) in electrical power systems. Increased penetration of DERs, new technologies, and changing regulatory frameworks require the continuous development of the grid infrastructure. As a result, the number and versatility of grid datasets, which are required in power system research, increases. Furthermore, the used grids are created by different methods and intentions. This paper gives orientation within these developments: First, a concise overview of well-known, publicly available grid datasets is provided. Second, background information on the compilation of the grid datasets, including different methods, intentions and data origins, is reviewed and characterized. Third, common terms to describe electric steady-state distribution grids, such as representative grid or benchmark grid, are assembled and reviewed. Recommendations for the use of these grid terms are made.


2018 ◽  
Vol 12 (4) ◽  
pp. 244-250 ◽  
Author(s):  
Mohammad Ghiasi

Overall, a power-flow study is a steady-state assessment whose goal is to specify the currents, voltages, and real and reactive flows in a power system under a given load conditions. This paper presents a comparison of common power flow techniques in the Tehran metro power distribution system at the presence of non-linear loads. Moreover, a modelling, simulation and analysis of this power distribution system is implemented with the Electrical Transient Analyser Program (ETAP) software. In this assessment, common power flow techniques including the Newton-Raphson (NR), Fast Decoupled (FD), and Accelerated Gauss-Seidel (AGS) techniques are provided and compared. The obtained results (total generation, loading, demand, system losses, and critical report of the power flow) are analysed. In this paper, we focus on the detailed assessment and monitoring by using the most modern ETAP software, which performs numerical calculations of a large integrated power system with fabulous speed and also generates output reports. The capability and effectiveness of the power flow analysis are demonstrated according to the simulation results obtained with ETAP by applying it to the power distribution system of the Tehran metro. In developing countries such as Iran, off-line modelling and simulation of power grids by a powerful software are beneficial and helpful for the best usage of the electrical energy.


Author(s):  
Koteswara Rao Uyyuru ◽  
Mahesh Kumar Mishra

In this paper, the perfect harmonic cancellation (PHC), unity power factor (UPF) control strategies of distribution static compensator (DSTATCOM) are compared along with a newly proposed control strategy. In the proposed strategy, to get the best power factor, the conductance factors for the compensated load are evaluated for a specified source current total harmonic distortion (THD) limit. The performance of this method along with perfect harmonic cancellation (PHC) and unity power factor (UPF) strategies is evaluated on a distribution system model developed using PSCAD 4.2.1. In the distribution system, harmonic resonance is one of the prime factors for the harmonic propagation. Hence, in damping the harmonic resonance, selection of an appropriate control strategy for the DSTATCOM is crucial and this is verified with a detailed study. The simulation results are presented to show the performance of these strategies in load compensation and damping the harmonic propagation in the distribution system.


2014 ◽  
Vol 529 ◽  
pp. 511-515
Author(s):  
Han Mei Hu ◽  
Qin Feng Li ◽  
Bo Hong ◽  
Nian Fang

Small current neutral grounding system is widely used in 3~66 kV power distribution system in China. In this power system, the single-phase to-earth fault occurs frequently in distribution, thus how to detect the fault line with great accuracy and high efficiency is an important subject in protective relaying of power system. According to a variety of existing theories of fault line selection for small-current neutral grounding system, this paper presents a new design based on integrated criterion, which has been applied in actual production.


Author(s):  
Hadi Suyono ◽  
Rini Nur Hasanah ◽  
Panca Mudjirahardjo ◽  
M Fauzan Edy Purnomo ◽  
Septi Uliyani ◽  
...  

<span>The increasing demand of electricity and number of distributed generations connected to power system greatly influence the level of power service reliability. This paper aims at improving the reliability in an electric power distribution system by optimizing the number and location of sectionalizers using the Ant Colony Optimization (ACO) and Simulated Annealing (SA) methods. Comparison of these two methods has been based on the reliability indices commonly used in distribution system: SAIFI, SAIDI, and CAIDI. A case study has been taken and simulated at a feeder of Pujon, a place in East Java province of Indonesia, to which some distributed generators were connected. Using the existing reliability indices condition as base reference, the addition of two distributed plants, which were micro hydro and wind turbine plants, has proven to lower the indices as much as 0.78% for SAIFI, 0.79% for SAIDI, and 2.32% for CAIDI. The optimal relocation of the existing 16 sectionalizers in the network proved to decrease further the reliability indices as much as 43.96% for SAIFI, 45.52% for SAIDI, and 2.8% for CAIDI, which means bringing to much better reliability condition. The implementation of the SA method on the considered data in general resulted in better reliability indices than using the ACO method.</span>


Sign in / Sign up

Export Citation Format

Share Document