scholarly journals DTC-ANN-2-level hybrid by neuronal hysteresis with mechanical sensorless induction motor drive using KUBOTA observer

Author(s):  
Dris Ahmed ◽  
Bendjebbar Mokhtar ◽  
Belaidi Aek

In this paper, DTC is applied for two-level inverter fed IM drives based on neuronal hysteresis comparators and The Direct Torque Control (DTC) is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple. An improvement of electric drive system can be obtained using a DTC method based on ANNs which reduces the torque and flux ripples, the estimated the rotor speed using the KUBOTA observer method based on measurements of electrical quantities of the motor. The validity of the proposed methods is confirmed by the simulation results.The THD (Total Harmonic Distortion) of stator current, torque ripple and stator flux ripple are determined and compared with conventional DTC control scheme using Matlab/Simulink environment.

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 374
Author(s):  
Tomas Esparza Sola ◽  
Huang-Jen Chiu ◽  
Yu-Chen Liu ◽  
Arief Noor Rahman

This paper presents a method to extend the DC bus utilization on an induction motor (IM) by using a combination of Space-Vector Modulated Direct Torque Control (DTC–SVM) and conventional DTC. The scheme proposed in this paper exploits the advantages of both control methods. During the linear region, it allows for a low torque ripple and low current harmonic distortion (THD). During the overmodulation region, it allows for the fastest torque response up to the six-step operation region. In both regions, there is complete independence of the motor parameters. The paper describes a way to provide a smooth transition between the two control schemes. Non-linearities affect the stator flux angle estimation, which leads to the inability to decouple torque and flux. To overcome this problem, a novel PI-based control scheme as well as a simplification on the decoupling terms’ calculation are proposed. Simulation and experimental results are presented to verify the feasibility of the proposed method.


2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


Author(s):  
Zineb Mekrini ◽  
Seddik Bri

<p>The aim of this article is propose a method to improve the direct torque control and design a Fuzzy Logic based Controller which can take necessary control action to provide the desired torque and flux of an asynchronous machine. It’s widely used in the industrial application areas due to several features such as fast torque response and less dependence on the rotor parameters. The major problem that is usually associated with DTC control is the high torque ripple as it is not directly controlled. The high torque ripple causes vibrations to the motor which may lead to component lose, bearing failure or resonance. The fuzzy logic controller is applied to reduce electromagnetic torque ripple. In this proposed technique, the two hysteresis controllers are replaced by fuzzy logic controllers and a methodology for implementation of a rule based fuzzy logic controller are presented. The simulation by Matlab/Simulink was built which includes induction motor d-q model, inverter model, fuzzy logic switching table and the stator flux and torque estimator. The validity of the proposed method is confirmed by the simulative results of the whole drive system and results are compared with conventional DTC method. </p>


2013 ◽  
Vol 416-417 ◽  
pp. 480-485
Author(s):  
Wei Zhang ◽  
Ping Zhang ◽  
Xin Hao Zhang ◽  
Xiao Feng Shen

This paper has proposed an efficient direct torque control strategy based on space vector modulation (SVM-DTC) for dual three-phase permanent magnet synchronous motor (DTP-PMSM), which is implemented in a synchronous reference frame aligned with the machine stator flux vector. This strategy adopts the space vector modulation technique to compensate for the stator flux error, and then the continuous smooth response of the vector control and the rapid response of direct torque control are both achieved. Simulation studies of a 3KW DTP-PMSM are carried out. Simulation results show the improvement of the torque response, decrease of the torque ripple, the higher steady performance and better flux waveform.


Author(s):  
Ali Najim Abdullah ◽  
Mohammed Hasan Ali

Direct torque control "DTC" technique is one of a high performance control system of an AC motor drive, which was proposed after the vector oriented control scheme during the resent 25 years. It has been developed rapidly for its concise system scheme, transient and dynamic performance. The DTC mechanism consists of voltage vector selection table, two hysteresis comparators and two estimators one for stator flux and another for electromagnetic torque. DTC is directly control torque and flux by using Voltage Source Inverter VSI, space vector and stator flux orientation and indirect speed regulated. A several control techniques can be used for improving the torque and flux performance. In this paper, the DTC with Proportional-Integral-Derivative (PID) controller used to improve the starting and dynamic performance of asynchronous motor AM, which gives good torque and flux response, best speed control and also minimize the unacceptable torque ripple. The mathematical model of DTC with PID controller of 3-phase induction motor IM are simulated under Matlab-Simulink. Therefore, the DTC based on PID controller has good performance of IM compared to classical DTC for starting, running state and also during change in load.


Author(s):  
Ding Wang ◽  
Zebin Yang ◽  
Xiaodong Sun ◽  
Weiming Sun ◽  
Haitao Mei

Purpose The purpose of this paper is to address the large stator flux linkage ripple and electromagnetic torque ripple caused by the hysteresis comparator in traditional direct torque control for a bearingless induction motor (BIM). Design/methodology/approach Model predictive direct torque control (MPDTC) strategy is adopted. On the basis of the mathematical model of BIM, the stator current and stator flux observational values are obtained, and the electromagnetic torque and stator flux at the next moment are predicted. Then, based on the relationship between the stator flux and the electromagnetic torque, the predicted stator flux can be transformed into an equivalent flux linkage vector, which eliminates the weighting coefficients problem among multiple variables in traditional objective functions. The objective function and torque PI controller will output the optimal stator flux linkage and the increments of the torque phase angle. Through the phase angle increments, the space voltage vector can be obtained by the reference flux linkage controller instead of the stator flux linkage and the torque hysteresis controller. Findings The proposed MPDTC method can effectively improve the stator flux linkage and the torque ripple. It can implement the stable suspension of the rotor and improve the dynamic performance and steady-state accuracy of the BIM system. Originality/value A MPDTC strategy is proposed to reduce the ripple of stator flux and electromagnetic torque. The phase angle increment angle of stator flux linkage and electromagnetic torque is optimized by model prediction, and the optimal space voltage vector is obtained by designing the reference flux controller.


Sign in / Sign up

Export Citation Format

Share Document