scholarly journals Wireless power and data transfer through carbon composite using a common inductive link

Author(s):  
Tuan Anh Vu ◽  
Chi Van Pham ◽  
William Tran ◽  
Anh-Vu Pham ◽  
Christopher S. Gardner

This paper presents the design and development of an integrated wireless power transfer and data communication system. The power and data transfer share a common inductive link that consists of two identical Helical coils placed on both sides of a carbon composite barrier. Power and data are transferred simultaneously through a 5-mm thick carbon composite barrier without any physical penetration or contact. Power transfer measurements show that the system can deliver 9.7 AC power to the receiving coil with a power transfer efficiency of 36% through the carbon composite barrier. The system achieves a bidirectional half-duplex data communication with the data rate of unit 1.2kbit/s.

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Jiarui Bao ◽  
Shuyan Hu ◽  
Zibin Xie ◽  
Guangxi Hu ◽  
Ye Lu ◽  
...  

This work focuses on the optimization of coupling coefficient (k) of the inductive link for the wireless power transfer (WPT) system to be used in implantable medical devices (IMDs) of centimeter size. The analytic expression of k is presented. Simulations are conducted by using the high-frequency structure simulator (HFSS). Analytic results are verified with simulations. The receiving (Rx) coil is implanted in the body and set as a circular coil with a radius of 5 millimeters for reducing the risk of tissue inflammation. The inductive link under misalignment scenarios is optimized to improve k. When the distance between the transmitting (Tx) and Rx coils is fixed at 20 mm, it is found that, to maximize k, the Tx coil in a planar spiral configuration with an average radius of 20 mm is preferred, and the Rx coil in a solenoid configuration with a wire pitch of 0.7 mm is recommended. Based on these optimization results, an inductive link WPT system is proposed; the coupling coefficient k, the power transfer efficiency (PTE), and the maximum power delivered to the load (MPDL) of the system are obtained with both simulation and experiment. Different media of air, muscle, and bone separating the Tx and Rx coils are tested. For the muscle (bone) medium, PTE is 44.14% (43.07%) and MPDL is 145.38 mW (128.13 mW), respectively.


Author(s):  
Tuan Anh Vu ◽  
Chi Van Pham ◽  
Anh-Vu Pham ◽  
Christopher S. Gardner

<span style="color: #000000; font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 10px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">This paper presents a highly efficient power transfer system based on a co-design of a class-E power amplifier (PA) and a pair of inductively coupled Helical coils for through-metal-wall power transfer. Power is transferred wirelessly through a 3.1-mm thick aluminum barrier without any physical penetration and contact. Measurement results show that the class-E PA achieves a peak power gain of 25.2 dB and a maximum collector efficiency of 57.3%, all at 200 Hz. The proposed system obtains a maximum power transfer efficiency of 9% and it can deliver 5 W power to the receiver side through the aluminum barrier.</span>


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2161 ◽  
Author(s):  
Xiaofei Li ◽  
Haichao Wang ◽  
Xin Dai

Wireless Power Transfer (WPT) technology is gaining global popularity. However, in some applications, data transmission is also required to monitor the load states. This paper presents an alternative wireless power and data transmission method via the shared inductive link. With the method, the system presents three characteristics: (1) controllability and stability of the output voltage; (2) miniaturization in volume of the system; (3) decoupled transmission of power and data. The output voltage control is realized by a non-inductive hysteresis control method. In particular, data is transferred when the power transmission is blocked (i.e., the hysteresis switch is off). The interference between power and data transmission is very small. The signal to noise ratio (SNR) performance which is relevant to the interference from power transfer to data transfer and data transfer capacity, is studied and optimized. Both simulation and experimental results have verified the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. Adeeb ◽  
A. B. Islam ◽  
M. R. Haider ◽  
F. S. Tulip ◽  
M. N. Ericson ◽  
...  

A wireless power transfer system using an inductive link has been demonstrated for implantable sensor applications. The system is composed of two primary blocks: an inductive power transfer unit and a backward data communication unit. The inductive link performs two functions: coupling the required power from a wireless power supply system enabling battery-less, long-term implant operation and providing a backward data transmission path. The backward data communication unit transmits the data to an outside reader using FSK modulation scheme via the inductive link. To demonstrate the operation of the inductive link, a board-level design has been implemented with high link efficiency. Test results from a fabricated sensor system, composed of a hybrid implementation of custom-integrated circuits and board-level discrete components, are presented demonstrating power transmission of 125 mW with a 12.5% power link transmission efficiency. Simultaneous backward data communication involving a digital pulse rate of up to 10 kbps was also observed.


Author(s):  
Christoph Degen

AbstractThis paper gives an overview of optimizing wireless power transfer systems using magnetic coupling. Optimization aims to maximize either the power transfer efficiency or the transferred power. The resulting load calculation and matching strategies are revisited. Moreover, the coupling system is described, starting with its equivalent circuit and scattering parameters. In addition to wireless power transfer, communication in RFID and NFC systems and its frequency characteristics and bandwidth issues are highlighted. The focus in this paper is on load modulation for data transfer between a tag and reader. For this purpose, subcarrier voltages are derived using time-domain as well as frequency-domain signal analysis.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1417
Author(s):  
Jung-Hoon Cho ◽  
Byoung-Hee Lee ◽  
Young-Joon Kim

Electronic devices usually operate in a variable loading condition and the power transfer efficiency of the accompanying wireless power transfer (WPT) method should be optimizable to a variable load. In this paper, a reconfigurable WPT technique is introduced to maximize power transfer efficiency in a weakly coupled, variable load wireless power transfer application. A series-series two-coil wireless power network with resonators at a frequency of 150 kHz is presented and, under a variable loading condition, a shunt capacitor element is added to compensate for a maximum efficiency state. The series capacitance element of the secondary resonator is tuned to form a resonance at 150 kHz for maximum power transfer. All the capacitive elements for the secondary resonators are equipped with reconfigurability. Regardless of the load resistance, this proposed approach is able to achieve maximum efficiency with constant power delivery and the power present at the load is only dependent on the input voltage at a fixed operating frequency. A comprehensive circuit model, calculation and experiment is presented to show that optimized power transfer efficiency can be met. A 50 W WPT demonstration is established to verify the effectiveness of this proposed approach.


Sign in / Sign up

Export Citation Format

Share Document