Vibration Based Energy Harvesting Interface Circuit using Diode-Capacitor Topologies for Low Power Applications

Author(s):  
Amirul Adlan Amirnudin ◽  
Farahiyah Mustafa ◽  
Anis Maisarah Mohd Asry ◽  
Sy Yi Sim

<span>A battery-less energy harvesting interface circuit to extract electrical energy from vibration has been proposed in this paper for low power applications. The voltage doubler integrated with DC – DC boost converter circuits were designed and simulated using MultiSIM software. The circuit was then fabricated onto a printed circuit board (PCB), using standard fabrication process. The Cockcroft Walton doubler was chosen to be implemented in this study by utilizing diode-capacitor topologies with additional RC low pass filter. The DC – DC boost converter has been designed using a CMOS step -up DC – DC switching regulators, which are suitable for low input voltage system. The achievement of this interface circuit was able to boost up the maximum voltage of 5 V for input voltage of 800 mV.</span>

2018 ◽  
Vol 27 (03n04) ◽  
pp. 1840021 ◽  
Author(s):  
Shahed Enamul Quadir ◽  
John A. Chandy

Physical Unclonable Functions (PUFs) are probabilistic circuit primitives that extract randomness from the physical characteristics of a device. PUFs are easy and simple to implement and its random nature makes its behavior hard to predict and model. Most existing PUF designs are based on variation at the chip level and can not be implemented in a printed circuit board (PCB). Therefore, these PUFs can not be used to protect against counterfeit PCBs in a distributed supply chain. In this work, we propose a novel PUF design based on resistor and capacitor variations for low pass filters (LoPUF). We demonstrate the setup in a protoboard for different resistor-capacitor pairs (RC pairs) for reliable low pass filter PUF. Because of process variations, the voltage will be different at the same cut-off frequency for our proposed PUF. Finally, the output of the filter is connected to an inverter to measure the pulse width and best suitable pulses are used for ID generation based on our algorithm.


2015 ◽  
Vol 785 ◽  
pp. 131-135 ◽  
Author(s):  
Mahidur R. Sarker ◽  
Azah Mohamed ◽  
Ramizi Mohamed

This paper presents the modeling of a full-wave rectifier circuit based on piezoelectric vibration transducer for energy-harvester system. Piezoelectric vibration crystals are a viable means of harvesting energy for low-power embedded systems e.g. wireless sensor network. Distinct power handling circuits are assessed with the presence of piezoelectric vibration based energy harvesting transducer. Inside the interface circuit, the voltage should be started up when the AC input voltage is very low to supply a regulated DC voltage up to 2V. An active technique is chosen to design an ultra-low power circuit from a piezoelectric vibration transducer. MOSFET bride ac–dc rectifier, energy storage device e.g. capacitor and boost converter with regulator are the common components of the energy harvesting circuits. An integrated promoter ac-dc rectifier circuit and boost converter that accept a maximum input voltage of 0.3V and provide a regulated output voltage of 2V serve as the supply. The MOSFET and thyristor are considered to develop the proposed circuit replacing conventional ac-dc rectifier due to low input voltage at which diode does not work.


2018 ◽  
Vol 150 ◽  
pp. 01012
Author(s):  
Muhamad Syazmie Bin Sepeeh ◽  
Farahiyah Binti Mustafa ◽  
Anis Maisarah Binti Mohd Asry ◽  
Sy Yi Sim ◽  
Mastura Shafinaz Binti Zainal Abidin

In this study, the development of operational amplifier (op-amp) based rectifier for piezoelectric energy harvesting applications was studied. The two stage op-amp full wave rectifier was used to convert the AC signal to DC signal voltage received by piezoelectric devices. The inverted half wave rectifier integrated with full wave rectifier were designed and simulated using MultiSIM software. The circuit was then fabricated onto a printed circuit board (PCB), using standard fabrication process. The achievement of this rectifier was able to boost up the maximum voltage of 5 V for input voltage of 800 mV. The output of the rectifier was in DC signal after the rectification by the op-amp. In term of power, the power dissipation was reduced consequently the waste power decreases. Future work includes optimization of the rectifying circuit to operate more efficiently can be made to increase the efficiency of the devices.


2014 ◽  
Vol 23 (02) ◽  
pp. 1450027 ◽  
Author(s):  
MINGYANG CHEN ◽  
MENGLIAN ZHAO ◽  
QING LIU ◽  
LU WANG ◽  
XIAOBO WU

An ultra-low power boost converter for energy harvesting applications is introduced in this brief. The idle power dissipation is reduced to 800 nW by using a novel output voltage detector (OVD) which is insensitive to temperature variation and process deviation. Furthermore, a constant on-time (COT)-based hysteretic burst mode controller with maximum power point tracking (MPPT) technique is developed to ensure high power efficiency for a wide input voltage range. After startup, the input voltage can be set as low as 30 mV. The whole system is designed and fabricated in SMIC 0.18 μm CMOS process, the end-to-end power efficiency of this converter can reach 49% at 350 mV input voltage and 65% at 750 mV input voltage.


2018 ◽  
Vol 10 (5-6) ◽  
pp. 587-595 ◽  
Author(s):  
P. Rodriguez Vazquez ◽  
J. Grzyb ◽  
N. Sarmah ◽  
B. Heinemann ◽  
U.R. Pfeiffer

AbstractThis paper presents a fully-integrated direct-conversion fundamentally-operated mixer-first quadrature receiver module with a tunable LO in the 219–266 GHz band. It has been implemented in a 0.13-μm SiGe heterojunction bipolar transistor technology. It includes an on-chip LO path driven externally from the printed circuit board (PCB) connector level at 13.6–16.7 GHz. A hybrid coupler generates the quadrature LO signal, which drives a pair of double-balanced fundamentally-operated down-conversion mixers, whose RF ports are connected to a wideband lens-integrated on-chip ring antenna. The chip-on-lens assembly is placed in the recess of a high-speed PCB and wire-bonded. To compensate the inductive behavior of the wire-bond interconnection between the chip and the PCB at the high-speed IF outputs, an on-board 8-section step-impedance low-pass filter has been implemented. The module shows a 47 GHz 3-dB radio frequency/local oscillator operation bandwidth (BW), a peak conversion gain of 7.8 dB, a single-side-band noise figure of 11.3 dB, and a 3-dB IF BW of 13 GHz. The in-phase and quadrature amplitude imbalance stays below 1.58 dB for the 210–280 GHz band. The down-conversion and the baseband stages consume together 75.5 mW, while the LO path 378 mW. The maximum data-rate achieved with this receiver in combination with the transmitter presented in [1–3] is 60 Gbps for quadrature phase shift keying modulation.


Author(s):  
Peter Tawadros ◽  
Mohamed Awadallah ◽  
Paul Walker ◽  
Nong Zhang

This paper presents the use and development of a specific wireless torque measurement system that is used to obtain the transient torque performance of vehicle transmissions. The torque sensor is strain-based, using surface-mounted strain gauges on a prop shaft. The gauges are connected to a compact printed circuit board, which is clamped to the shaft next to the strain gauges using a three-dimensional printed housing. The printed circuit board contains an amplifier, low-pass filter, analog-to-digital converter, microcontroller and bluetooth transceiver. The printed housing is impact resistant carbon-reinforced nylon and securely retains the printed circuit board and the battery powering the device. The transmitted torque data are received by a transceiver, which is interfaced to a PC through an RS-232 connection. NI LabVIEW is used to process, display and save data. The wireless torque sensor was installed to the Unit Under Test at the output shaft of the five-speed manual transmission. The Unit Under Test was installed on a dynamometer for verification purposes and the transient torque was recorded under various operational conditions. The transient output torque of the manual transmission is measured and compared with results obtained from simulations performed under similar operating conditions. The two sets of transient responses show a good correlation with each other and hence demonstrate that the torque sensor meets the major design specifications. The data obtained will be used to enhance the fidelity of the software model.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750048 ◽  
Author(s):  
Vida Orduee Niar ◽  
Gholamreza Zare Fatin

In this paper, a [Formula: see text]-[Formula: see text] low-pass and low power filter with tunable in-band attenuation for WiMAX/LTE receiver is presented. The fourth-order filter consists of two cascaded biquad stages. The source-follower (SF) stage is used as a key building block in these biquads. In this paper, we have presented a circuit technique to reduce the nonlinearity of the SF stage resulting from unmatched signal swings at the gate and source terminals of the input transistor. The proposed SF stage, is used for design of a linear biquad which is then utilized in a fourth-order Butterworth low-pass filter. The simulation results of the filter for bandwidth of 10 MHz show that the IIP3 of the filter is equal to 8.22[Formula: see text]dBm, in-band noise density is 100[Formula: see text]nV/[Formula: see text]Hz and power consumption is 5.9[Formula: see text]mW. The supply voltage of the filter is equal to 1[Formula: see text]V.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Hui Chen ◽  
Di Jiang ◽  
Ke-Song Chen ◽  
Hong-Fei Zhao

A novel and miniature high-pass filter (HPF) based on a hybrid-coupled microstrip/nonuniform coplanar waveguide (CPW) resonator is proposed in this article, in which the designed CPW has exhibited a wideband dual-mode characteristic within the desired high-pass frequency range. The implemented filter consists of the top microstrip coupled patches and the bottom modified nonuniformly short-circuited CPW resonator. Simulated results from the electromagnetic (EM) analysis software and measured results from a vector network analyzer (VNA) show a good agreement. A designed and fabricated prototype filter having a 3 dB cutoff frequency (fc) of 5.78 GHz has shown an ultrawide high-pass behavior, which exhibits the highest passband frequency exceeding 4.0fcunder the minimum insertion loss (IL) 0.75 dB. The printed circuit board (PCB) area of the filter is approximately0.062λg×0.093λg, whereλgis the guided wavelength atfc.


Sign in / Sign up

Export Citation Format

Share Document