Tyrosine phosphorylation / dephosphorylation balance is involved in thrombin-evoked microtubular reorganisation in human platelets

2007 ◽  
Vol 98 (08) ◽  
pp. 375-384 ◽  
Author(s):  
Aicha Bouaziz ◽  
Nidhal Ben Amor ◽  
Geoffrey Woodard ◽  
Hanen Zibidi ◽  
José López ◽  
...  

SummaryWe have investigated the intracellular mechanisms involved in microtubular remodelling by thrombin and its possible involvement in platelet aggregation and secretion. Platelet stimulation with thrombin induces a time- and concentration-dependent regulation of the microtubular content, which was found to be maximally effective at the concentration 0.1 U/ml. Thrombin (0.1 U/ml) evoked an initial decrease in the microtubule content detectable at 5 seconds (sec) and reached a minimum 10 sec after stimulation.The microtubular content then increased, exceeding basal levels again approximately 30 sec after stimulation. Inhibition of tyrosine phosphatases using vanadate abolished thrombin-induced microtubular depolymerisation while inhibition of tyrosine kinases by methyl-2,5-dihydroxycinnamate prevented microtubule polymerisation.Thrombin activates the cytosolic Brutons tyrosine kinase (Btk) and Src proteins. Inhibition of Btk or Src by LFM-A13 or PP1, respectively, abolished thrombin-induced microtubular polymerisation, while maintaining intact its ability to induce initial depolymerisation. Microtubular disruption by colchicine significantly reduced thrombin induced platelet aggregation and ATP secretion. Similar results were observed after inhibition of microtubular disassembly by paclitaxel.These findings indicate that thrombin induces microtubular remodelling by modifying the balance between protein tyrosine phosphorylation and dephosphorylation. The former seems to be required for microtubular polymerisation, while tyrosine dephosphorylation is required for microtubular depolymerisation. Both, initial microtubular disassembly and subsequent polymerisation are required for thrombin-induced platelet aggregation and secretion in human platelets.

2000 ◽  
Vol 347 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Tsukasa OHMORI ◽  
Yutaka YATOMI ◽  
Naoki ASAZUMA ◽  
Kaneo SATOH ◽  
Yukio OZAKI

Proline-rich tyrosine kinase 2 (Pyk2) (also known as RAFTK, CAKβ or CADTK) has been identified as a member of the focal adhesion kinase (FAK) family of protein-tyrosine kinases and it has been suggested that the mode of Pyk2 activation is distinct from that of FAK. In the present study we investigated the mode of Pyk2 activation in human platelets. When platelets were stimulated with thrombin, Pyk2, as well as FAK, was markedly tyrosine-phosphorylated, in a manner mostly dependent on αIIbβ3 integrin-mediated aggregation. The residual Pyk2 tyrosine phosphorylation observed in the absence of platelet aggregation was completely abolished by pretreatment with BAPTA/AM [bis-(o-aminophenoxy)ethane-N,N,Nʹ,Nʹ-tetra-acetic acid acetoxymethyl ester]. The Pyk2 phosphorylation was inhibited by protein kinase C (PKC) inhibitors at concentrations that inhibited platelet aggregation. In contrast, direct activation of PKC with the active phorbol ester PMA induced the tyrosine phosphorylation of Pyk2 and FAK but only when platelets were fully aggregated with the exogenous addition of fibrinogen (the ligand for αIIbβ3 integrin). Furthermore, PMA-induced Pyk2 (and FAK) tyrosine phosphorylation was also observed when platelets adhered to immobilized fibrinogen. The activation of the von Willebrand factor (vWF)--glycoprotein Ib pathway with botrocetin together with vWF failed to induce Pyk2 (and FAK) tyrosine phosphorylation. Most Pyk2 and FAK was present in the cytosol and membrane skeleton fractions in unstimulated platelets. When platelets were stimulated with thrombin, both Pyk2 and FAK were translocated to the cytoskeleton in an aggregation-dependent manner. In immunoprecipitation studies, Pyk2, as well as FAK, seemed to associate with Shc through Grb2. With the use of glutathione S-transferase fusion proteins containing Shc-SH2, Grb2-SH2, and Grb2 N-terminal and C-terminal SH3 domains, it was implied that the proline-rich region of Pyk2 (and FAK) binds to the N-terminal SH3 domain of Grb2 and that the phosphotyrosine residue of Shc binds to the SH2 domain of Grb2. Although Pyk2 and FAK have been reported to be differentially regulated in many cell types, our results suggest that, in human platelets, the mode of Pyk2 activation is mostly similar to that of FAK, in terms of αIIbβ3 integrin-dependent and PKC-dependent tyrosine phosphorylation. Furthermore, Pyk2, as well as FAK, might have one or more important roles in post-aggregation tyrosine phosphorylation events, in association with the cytoskeleton and through interaction with adapter proteins including Grb2 and Shc.


1995 ◽  
Vol 181 (3) ◽  
pp. 1005-1014 ◽  
Author(s):  
K M Kim ◽  
M Reth

Most mature B lymphocytes coexpress two classes of antigen receptor, immunoglobulin (Ig)M and IgD. The differences in the signal transduction from the two receptors are still a matter of controversy. We have analyzed B cell lines expressing IgM or IgD antigen receptors with the same antigen specificity. Cross-linking of these receptors with either antigen, or class-specific antibodies, results in the activation of protein tyrosine kinases and the phosphorylation of the same substrate proteins. The kinetic and the intensity of phosphorylation, however, was quite different between the two receptors when they were cross-linked by antigen. In membrane IgM-expressing cells, the substrate phosphorylation reached a maximum after 1 minute and diminished after 60 minutes whereas, in the membrane IgD-expressing cells, the substrate phosphorylation increased further over time, reached its maximum at 60 minutes, and persisted longer than 240 minutes after exposure to antigen. As a result, the intensity of protein tyrosine phosphorylation induced by cross-linking of membrane IgD was stronger than that induced by membrane IgM. Studies of chimeric receptors demonstrate that only the membrane-proximal C domain and/or the transmembrane part of membrane-bound IgD molecule is required for the long-lasting substrate phosphorylation. Together, these data suggest that the signal emission from the two receptors is controlled differently.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1928-1935 ◽  
Author(s):  
K Okuda ◽  
B Druker ◽  
Y Kanakura ◽  
M Koenigsmann ◽  
JD Griffin

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) exerts its biologic activities through binding to specific high-affinity cell surface receptors. After binding, the ligand/receptor complex is rapidly internalized in most hematopoietic cells. Using a human factor- dependent cell line, MO7, and normal human neutrophils, we found that the internalization is exquisitely temperature-dependent, such that ligand/receptor internalization does not detectably occur at 4 degrees C. Activation of the GM-CSF receptor has previously been shown to stimulate a number of postreceptor signal transduction pathways, including activation of a tyrosine kinase and activation of the serine/threonine kinase, Raf-1. The GM-CSF-stimulated increase in tyrosine kinase activity occurs rapidly at both 4 degrees C and 37 degrees C, and therefore is likely to be independent of receptor internalization. At 37 degrees C, the protein tyrosine phosphorylation was transient in MO7 cells, with maximum phosphorylation observed after 5 to 15 minutes, followed by a rapid decline. At 4 degrees C, the protein tyrosine phosphorylation of the same substrates was greater than at 37 degrees C, and no decline in substrate phosphorylation was observed for at least 90 minutes. In contrast to tyrosine phosphorylation, the activation and hyper-phosphorylation of Raf-1 observed at 37 degrees C in both MO7 cells and neutrophils was markedly diminished at 4 degrees C. These results indicate that at least one postreceptor signal transduction mechanism, activation of a tyrosine kinase, does not require ligand/receptor internalization, and indicate that receptor internalization may be a consequence, rather than the initiator, of signal transduction.


1998 ◽  
Vol 274 (2) ◽  
pp. H513-H519 ◽  
Author(s):  
Susan A. Kelly ◽  
Pascal J. Goldschmidt-Clermont ◽  
Emily E. Milliken ◽  
Toshiyuki Arai ◽  
Elise H. Smith ◽  
...  

Proinflammatory cytokines initiate the vascular inflammatory response via the upregulation of adhesion molecules on the luminal endothelial surface. We investigated directly the role of protein tyrosine phosphorylation in the upregulation of the endothelial adhesion molecules, intercellular adhesion molecule 1 (ICAM-1) and E-selectin, and the consequent adhesion of neutrophils, after tumor necrosis factor (TNF)-α-stimulation of human aortic endothelial cells in vitro. Time- and dose-dependent TNF-α-stimulated ICAM-1 and E-selectin upregulation and neutrophil adhesion each were suppressed by tyrosine kinase inhibitors, including genistein (200 μM), but not genistin, its isoflavone analog without tyrosine kinase inhibitory activity. Tyrphostin AG 126, a synthetic selective tyrosine kinase inhibitor, also suppressed ICAM-1 and E-selectin upregulation and neutrophil adhesion, each in a dose-dependent manner, whereas tyrphostin AG 1288 had no effect. Tyrosine phosphorylation of two proteins (85 and 145 kDa in the cytoskeleton fraction) found minutes after TNF-α-stimulation was also inhibited by genistein. These findings suggest that, in endothelial cells, TNF-α upregulates ICAM-1 and E-selectin expression and consequent neutrophil adhesion via protein tyrosine phosphorylation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3541-3541
Author(s):  
Swaminathan Murugappan ◽  
Haripriya Shankar ◽  
Satya Kunapuli

Abstract Protein kinase C (PKC)-δ is a novel PKC that has been shown to be tyrosine phosphorylated upon stimulation with agonists in platelets. Tyrosine phosphorylation of PKCδ has been shown to occur in a Fyn-dependent manner downstream of glycoprotein VI (GPVI) signaling in platelets. Although thrombin causes tyrosine phosphorylation of PKCδ in platelets, the mechanism of this event is not elucidated. In this study, we investigated whether G-protein signaling pathways utilize similar pathways as GPVI in tyrosine phosphorylation of PKCδ. Protease activated receptor (PAR) -1 selective peptide, SFLLRN and PAR - 4 selective peptide, AYPGKF caused a time- and concentration-dependent increase in tyrosine phosphorylation of PKCδ in human platelets. However, AYPGKF failed to cause tyrosine phosphorylation of PKCδ in Gq-deficient mouse platelets. Both U73122, a phospholipase C (PLC) inhibitor, and dimethyl-BAPTA, an intracellular calcium chelator, inhibited the tyrosine phosphorylation of PKCδ downstream of the PAR activation suggesting a role for Gq/PLC pathways and intracellular calcium in mediating this event. Inhibition of PKC isoforms using GF109203X potentiated the tyrosine phosphorylation of PKCδ. The Src family tyrosine kinase inhibitors, PP1 and PP2 inhibited the tyrosine phosphorylation of PKCδ suggesting a role for Src family tyrosine kinase members in this event. We also found that both Lyn and Src are physically associated with PKCδ in a constitutive manner in platelets. Finally we found that there was a time-dependent activation of Src following activation of platelets with thrombin. Thus, the precomplexed Src and Lyn tyrosine kinases get activated following PAR stimulation resulting in the tyrosine phosphorylation of PKCδ. All these data indicate that tyrosine phosphorylation of PKCδ downstream of thrombin occurs in a calcium- and Src-family kinase dependent manner in human platelets.


Sign in / Sign up

Export Citation Format

Share Document