Role of proteolysis in development of murine adipose tissue

2008 ◽  
Vol 99 (02) ◽  
pp. 290-294 ◽  
Author(s):  
Valerie Christiaens ◽  
Ilse Scroyen ◽  
H. Roger Lijnen

SummaryObesity is a common disorder, and related diseases such as diabetes, atherosclerosis, hypertension, cardiovascular disease and cancer are a major cause of mortality and morbidity inWesterntype societies. Development of obesity is associated with extensive modifications in adipose tissue involving adipogenesis, angiogenesis and extracellular matrix proteolysis. The fibrinolytic (plasminogen/plasmin) and matrix metalloproteinase (MMP) systems cooperate in these processes. A nutritionally induced obesity model in transgenic mice has been used extensively to study the role of the fibrinolytic and MMP systems in the development of obesity. These studies support a role of both systems in adipogenesis and obesity, and suggest that modulation of proteolytic activity may affect development of adipose tissue.

2009 ◽  
Vol 29 (01) ◽  
pp. 44-45 ◽  
Author(s):  
H. R. Lijnen

SummaryObesity is a common disorder and a known risk factor for vascular thrombotic complications. Development of obesity is associated with extensive modifications in adipose tissue involving adipogenesis, angiogenesis and extracellular matrix proteolysis. Studies using a nutritionally induced obesity model in transgenic mice support a role of the fibrinolytic (plasminogen/plasmin) and matrix metalloproteinase (MMP) systems in these processes. Venous or arterial thrombosis models in obese mice confirm a prothrombotic risk associated with obesity.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Xin Li ◽  
Yueshui Zhao ◽  
Chuan Chen ◽  
Li Yang ◽  
Hyun-ho Lee ◽  
...  

ABSTRACT Fibrosis is recognized as the major pathological change in adipose tissue during the development of obesity. However, the detailed mechanisms governing the interactions between the fibrotic components and their modifiers remain largely unclear. Here, we reported that matrix metalloproteinase 14 (MMP14), a key pericellular collagenase, is dramatically upregulated in obese adipose tissue. We generated a doxycycline-inducible adipose tissue-specific MMP14 overexpression model to study its regulatory function. We found that overexpression of MMP14 in the established obese adipose tissue leads to enlarged adipocytes and increased body weights in transgenic mice. Furthermore, the mice exhibited decreased energy expenditure, impaired lipid metabolism, and insulin resistance. Mechanistically, we found that MMP14 digests collagen 6α3 to produce endotrophin, a potent costimulator of fibrosis and inflammation. Unexpectedly, when overexpressing MMP14 in the early-stage obese adipose tissue, the transgenic mice showed a healthier metabolic profile, including ameliorated fibrosis and inflammation, as well as improved lipid and glucose metabolism. This unique metabolic phenotype is likely due to digestion/modification of the dense adipose tissue extracellular matrix by MMP14, thereby releasing the mechanical stress to allow for its healthy expansion. Understanding these dichotomous impacts of MMP14 provides novel insights into strategies to treat obesity-related metabolic disorders.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Dong Guo ◽  
Yuerong Xu ◽  
Jian Ding ◽  
Jiaying Dong ◽  
Ning Jia ◽  
...  

Despite substantial improvements in therapeutic strategies, cardiovascular disease (CVD) is still among the leading causes of mortality and morbidity worldwide. Exosomes, extracellular vesicles with a lipid bilayer membrane of endosomal origin, have been the focus of a large body of research in CVD. Exosomes not only serve as carriers for signal molecules responsible for intercellular and interorgan communication underlying CVD pathophysiology but also are bioactive agents which are partly responsible for the therapeutic effect of stem cell therapy of CVD. We here review recent insights gained into the role of exosomes in apoptosis, hypertrophy, angiogenesis, fibrosis, and inflammation in CVD pathophysiology and progression and the application and mechanisms of exosomes as therapeutic agents for CVD.


2018 ◽  
Vol 6 (1) ◽  
pp. 168-178 ◽  
Author(s):  
V. Guneta ◽  
Z. Zhou ◽  
N. S. Tan ◽  
S. Sugii ◽  
M. T. C. Wong ◽  
...  

The extracellular matrix (ECM) plays an important role in cellular fate decisions as demonstrated by adipose-derived stem cells (ASCs).


2021 ◽  
Vol 11 ◽  
Author(s):  
Mikyla A. Callaghan ◽  
Samuel Alatorre-Hinojosa ◽  
Liam T. Connors ◽  
Radha D. Singh ◽  
Jennifer A. Thompson

Since the 1950s, the production of plastics has increased 200-fold, reaching 360 million tonnes in 2019. Plasticizers, additives that modify the flexibility and rigidity of the product, are ingested as they migrate into food and beverages. Human exposure is continuous and widespread; between 75 and 97% of urine samples contain detectable levels of bisphenols and phthalates, the most common plasticizers. Concern over the toxicity of plasticizers arose in the late 1990s, largely focused around adverse developmental and reproductive effects. More recently, many studies have demonstrated that exposure to plasticizers increases the risk for obesity, type 2 diabetes, and cardiovascular disease (CVD). In the 2000s, many governments including Canada, the United States and European countries restricted the use of certain plasticizers in products targeted towards infants and children. Resultant consumer pressure motivated manufacturers to substitute plasticizers with analogues, which have been marketed as safe. However, data on the effects of these new substitutes are limited and data available to-date suggest that many exhibit similar properties to the chemicals they replaced. The adverse effects of plasticizers have largely been attributed to their endocrine disrupting properties, which modulate hormone signaling. Adipose tissue has been well-documented to be a target of the disrupting effects of both bisphenols and phthalates. Since adipose tissue function is a key determinant of cardiovascular health, adverse effects of plasticizers on adipocyte signaling and function may underlie their link to cardiovascular disease. Herein, we discuss the current evidence linking bisphenols and phthalates to obesity and CVD and consider how documented impacts of these plasticizers on adipocyte function may contribute to the development of CVD.


2010 ◽  
Vol 24 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Salete Smaniotto ◽  
Daniella Areas Mendes-da-Cruz ◽  
Carla Eponina Carvalho-Pinto ◽  
Luiza M. Araujo ◽  
Mireille Dardenne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document