scholarly journals Tissue factor and thrombosis: The clot starts here

2010 ◽  
Vol 104 (09) ◽  
pp. 432-439 ◽  
Author(s):  
A. Phillip Owens ◽  
Nigel Mackman

SummaryThrombosis, or complications from thrombosis, currently occupies the top three positions in the cardiovascular causes of morbidity and mortality in the developed world. There are a limited number of safe and effective drugs to prevent and treat thrombosis. Animal models of thrombosis are necessary to better understand the complex components and interactions involved in the formation of a clot. Tissue factor (TF) is required for the initiation of blood coagulation and likely plays a key role in both arterial and venous thrombosis. Understanding the role of TF in thrombosis may permit the development of new antithrombotic drugs. This review will focus on the role of TF in in vivo models of thrombosis.

2019 ◽  
Vol 14 (2) ◽  
pp. 70-85
Author(s):  
T. A. Kovalenko ◽  
M. A. Panteleev ◽  
A. N. Sveshnikova

Tissue factor, being the main initiator of the blood coagulation in vivo, is involved in a number of physiological processes, such as angiogenesis or cell migration. These processes are not only significant for normal physiology, but also play a role in the development and progression of oncological diseases. This review presents data on the structure of tissue factor, its expression in normal conditions and in cancer, its role in thrombosis development associated with cancer, in angiogenesis and in metastasis. The involvement of tissue factor in such a wide range of physiological processes important for the progression of cancer makes it an attractive target molecule for therapy.


2001 ◽  
Vol 85 (03) ◽  
pp. 375-376 ◽  
Author(s):  
Ronald Bach ◽  
Nigel Key

SummaryTissue factor (TF) is a member of the cytokine receptor superfamily that functions as the essential receptor and co-factor for factor VII/ VIIa. Assembly of the TF-VII(a) complex on cellular surfaces initiates blood coagulation by limited proteolysis of zymogen factors IX and X, ultimately leading to the generation of thrombin. The realization that the TF pathway is the primary (if not the sole) mechanism for activation of coagulation in vivo has sparked an explosion in research in the last decade that has documented the central role of TF in certain forms of pathological thrombosis. Although these are too numerous to list, several are especially noteworthy by virtue of strongly supportive data in animal models. These include disseminated intravascular coagulation (DIC) induced by sepsis, and arterial thrombosis overlying an atherosclerotic plaque - the usual final event in myocardial infarction and unstable angina. In the case of arterial injury, inhibition of TF in animal models has also suggested that this pathway is important in mediating intimal hyperplasia. Other recent seminal observations include the recognition of several possible roles for TF that may not depend upon activation of the coagulation mechanism. For example, TF expression by certain tumor cell lines may determine enhanced metastatic potential, and in some tumors TF may promote angiogenesis (1).


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 376
Author(s):  
Chantal B. Lucini ◽  
Ralf J. Braun

In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


1999 ◽  
Vol 82 (07) ◽  
pp. 1-5 ◽  
Author(s):  
Michael Schmidt ◽  
Christian Götting ◽  
Britt Schwenz ◽  
Stefan Lange ◽  
Gert Müller-Berghaus ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is an important regulator in the extrinsic blood coagulation pathway. Although the regulatory biochemical role of TFPI is evident, the clinical significance of this proteinase inhibitor remains to be elucidated. The definition of a clinical TFPI deficiency seems to be more complex than that of other coagulation inhibitors because the activity and concentration of circulating TFPI can not be considered a true measure of in vivo levels. Its determination in plasma samples by immunological methods or functional assays has been shown to be inadequate in the detection of a clinical deficiency.Therefore, we screened genomic DNA samples of blood donors and thrombotic patients for alterations in the TFPI gene to assess the influence of a modified TFPI in venous thromboembolic diseases. We detected a single nucleotide substitution in exon 7 (536C→T) leading to a proline to leucine exchange at amino acid position 151 of the protein ([P151L]TFPI) and found the prevalence of heterozygous carriers in German unrelated blood donors to be 0.2% (n = 5120).Four unrelated persons out of 14 probands carrying the genetic variation could be linked to venous thrombosis. For calculation of a potential risk for venous thrombosis for carriers of the mutation we investigated healthy blood donors about thrombotic events. 7 out of 308 blood donors were found to have a history of venous thrombosis, one of them carried the TFPI mutation. Statistical calculation showed a significant relative risk for venous thrombosis for individuals with the trait (odds ratio, 9.3; confidence interval, 1.8-48.6; p <0.01).


Author(s):  
Zachary Fralish ◽  
Ethan M. Lotz ◽  
Taylor Chavez ◽  
Alastair Khodabukus ◽  
Nenad Bursac

The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.


2017 ◽  
Vol 44 (02) ◽  
pp. 142-150 ◽  
Author(s):  
Maureane Hoffman

AbstractThe role of tissue factor (TF) as the major initiator of hemostatic blood coagulation is well recognized. The ability to form an adequate hemostatic clot is essential to the normal healing of an injury by staunching bleeding, stabilizing the injured tissue, and serving as a scaffold for repair processes. Also, some molecules produced during hemostasis, particularly thrombin, have cytokine and growth factor-like activities that contribute to inflammation and repair. However, TF itself has activities as a regulator of cellular processes via direct signaling, as well as by facilitating activation of proteolytically activated receptors by activated factors VII and X. The importance of hemostasis in the host response to injury makes it very difficult to separate the hemostatic from nonhemostatic effects of TF on wound healing. The literature in this area remains sparse but suggests that TF influences the course and tempo of healing by cell signaling events that impact inflammation, epithelialization, and angiogenesis.


2003 ◽  
Vol 197 (11) ◽  
pp. 1585-1598 ◽  
Author(s):  
Shahrokh Falati ◽  
Qingde Liu ◽  
Peter Gross ◽  
Glenn Merrill-Skoloff ◽  
Janet Chou ◽  
...  

Using a laser-induced endothelial injury model, we examined thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy to analyze this complex physiologic process in a system that includes the vessel wall, the presence of flowing blood, and the absence of anticoagulants. We observe P-selectin expression, tissue factor accumulation, and fibrin generation after platelet localization in the developing thrombus in arterioles of wild-type mice. However, mice lacking P-selectin glycoprotein ligand 1 (PSGL-1) or P-selectin, or wild-type mice infused with blocking P-selectin antibodies, developed platelet thrombi containing minimal tissue factor and fibrin. To explore the delivery of tissue factor into a developing thrombus, we identified monocyte-derived microparticles in human platelet–poor plasma that express tissue factor, PSGL-1, and CD14. Fluorescently labeled mouse microparticles infused into a recipient mouse localized within the developing thrombus, indicating that one pathway for the initiation of blood coagulation in vivo involves the accumulation of tissue factor– and PSGL-1–containing microparticles in the platelet thrombus expressing P-selectin. These monocyte-derived microparticles bind to activated platelets in an interaction mediated by platelet P-selectin and microparticle PSGL-1. We propose that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking.


2000 ◽  
Vol 11 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Olaf Weber ◽  
Jürgen Reefschläger ◽  
Helga Rübsamen-Waigmann ◽  
Siegfried Raddatz ◽  
Matthias Hesseling ◽  
...  

Novel peptide aldehydes (PAs) were identified as potent inhibitors of human cytomegalovirus (HCMV) in vitro. Although these compounds were highly effective against HCMV, they did not exhibit any activity against murine cytomegalovirus (MCMV). The purpose of this study was to test the antiviral activity of PA 8 as a representative of this novel class of inhibitors against HCMV in vivo. Because of the strict species specificity of HCMV we had to use two artificial animal models. In the first model, HCMV-infected human cells were entrapped into agarose plugs and transplanted into mice. In the second model, SCID mice were transplanted with human tissues that were subsequently infected with a clinical isolate of HCMV. In these two models the antiviral activity of PA 8 was clearly demonstrated, ganciclovir only being slightly superior in its in vivo antiviral activity.


Sign in / Sign up

Export Citation Format

Share Document