Arctic sea ice under attack, and ancient records that can predict the future effects of climate change

Science ◽  
2020 ◽  
Author(s):  
Sarah Crespi
2021 ◽  
Author(s):  
Marco Morando

Abstract Climate Change is a widely debated scientific subject and Anthropogenic Global Warming is its main cause. Nevertheless, several authors have indicated solar activity and Atlantic Multi-decadal Oscillation variations may also influence Climate Change. This article considers the amplification of solar radiation’s and Atlantic Multi-decadal Oscillation’s variations, via sea ice cover albedo feedbacks in the Arctic regions, providing a conceptual advance in the application of Arctic Amplification for modelling historical climate change. A 1-dimensional physical model, using sunspot number count and Atlantic Multi-decadal Oscillation index as inputs, can simulate the average global temperature’s anomaly and the Arctic Sea Ice Extension for the past eight centuries. This model represents an innovative progress in understanding how existing studies on Arctic sea ice’s albedo feedbacks can help complementing the Anthropogenic Global Warming models, thus helping to define more precise models for future climate change.


Novos Olhares ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 98-113
Author(s):  
Ansgar Fellendorf

This research explores how satellite images of Arctic sea ice contribute to climate change discourse. Different discourses require distinct responses. Policy measures are contingent upon representation, be it i.e. a threat or opportunity. The representations discussed are by the NSIDC and NASA, which hold a visual hegemony. First, the introduction discusses visual studies in policy research and identifies a simplified dichotomy of a threat discourse and environmental citizenship. Moreover, the methodology of visual discourse analysis based on poststructuralism is described. The delineated images portray a vertical, planar view allowing for spatial reference. Arctic sea ice is a visible climate change effect and the absence of boundaries, intervisuality with the Earthrise icon and focus on environmental effects support a discourse of citizenship.


2015 ◽  
Vol 51 (9) ◽  
pp. 889-902 ◽  
Author(s):  
G. V. Alekseev ◽  
E. I. Aleksandrov ◽  
N. I. Glok ◽  
N. E. Ivanov ◽  
V. M. Smolyanitsky ◽  
...  

2018 ◽  
Vol 45 (7) ◽  
pp. 3255-3263 ◽  
Author(s):  
Fumiaki Ogawa ◽  
Noel Keenlyside ◽  
Yongqi Gao ◽  
Torben Koenigk ◽  
Shuting Yang ◽  
...  

2020 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiase ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The Arctic region exhibits some of the most visible signs of climate change globally. Arctic sea ice extent and volume has been declining sharply in recent decades; observations indicate a mean annual decrease of 3.2% since 1980. However, no extensive network of sea ice observations extends back further than the mid-18<sup>th</sup> century and satellite data since the late 1970s; this limits perspectives of sea ice variability on longer time scales. Thus, to understand the processes governing sea-ice cover and variability, predict how sea ice and ocean conditions will respond to anthropogenic climate change and to understand if the shrinking of Arctic sea ice is a unique and irreversible process, longer records of sea ice variability and oceanic conditions are required.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminifera and sedimentary analysis, was applied to a marine sediment core from North East Greenland to reconstruct changes in sea ice extent and palaeoceanographic conditions throughout the early Holocene (ca. 12,400-7,800 cal. yrs. BP). The study aimed to improve the understanding of the interaction between ocean circulation, sea ice and fluctuations of the Zachariae Isstrøm (ZI), one of the main glacier outlets of NE Greenland. Four distinct zones have been identified: Zone 1 (12,400-11,600 cal. yrs. BP) covering the transition from the Younger Dryas into the Holocene which evidences a gradually warming climate, resulting in a retreat of the ZI; Zone 2 (11,600 – 10,300 cal. yrs. BP) which encapsulates two distinct cooling events as a result of cooler surface waters, rapid release of freshwater and local feedback mechanisms. This coincides with sudden re-advances of the ZI followed by gradual retreats; 3) Zone 3 (10,300 – 8,600 cal. yrs. BP) shows warm and stable conditions, with warm surface waters that resulted in the retreat of the ZI; 4) Zone 4 (8,600 – 7,800 cal. yrs. BP) which shows a rapid return to cooler conditions, with cold surface waters and rapid freshwater outbursts resulting in the re-advance of the ZI, forced by decreasing solar insolation and cold surface waters. Our investigation thus indicated that changes in oceanic conditions at the NE Greenland shelf had a significant impact on the extent and melting rate of the ZI glacier.</p>


2018 ◽  
Author(s):  
Marion Lebrun ◽  
Martin Vancoppenolle ◽  
Gurvan Madec ◽  
François Massonnet

Abstract. The recent Arctic sea-ice reduction is associated with an increase in the ice-free season duration, with comparable contributions of earlier retreat and later freeze-up. Here we show that within the next decades, the trends towards later freeze-up should progressively exceed and ultimately double the trend towards an earlier ice retreat date. This feature is robustly found in a hierarchy of climate models and is consistent with a simple mechanism: solar energy is absorbed more efficiently than it can be released in non-solar form until freeze-up. Based on climate change simulations, we envision an increase and a shift of the ice-free season towards fall, which will affect Arctic ecosystems and navigation.


2008 ◽  
Vol 4 (4) ◽  
pp. 955-979 ◽  
Author(s):  
S. Brönnimann ◽  
T. Lehmann ◽  
T. Griesser ◽  
T. Ewen ◽  
A. N. Grant ◽  
...  

Abstract. The variability and trend of Arctic sea ice since the mid 1970s is well documented and linked to rising temperatures. However, much less is known for the first half of the 20th century, when the Arctic also underwent a period of strong warming. For studying this period in atmospheric models, gridded sea ice data are needed as boundary conditions. Current data sets (e.g., HadISST) provide a historical climatology, but may not be suitable when interannual-to-decadal variability is important, as they are interpolated and relaxed towards a (historical) climatology to fill in gaps, particularly in winter. Regional historical sea ice information exhibits considerable variability on interannnual-to-decadal scales, but is only available for summer and not in gridded form. Combining the advantages of both types of information could be used to constrain model simulations in a more realistic way. Here we discuss the feasibility of reconstructing year-round gridded Arctic sea ice from 1900 to 1953 from historical information and a coupled climate model. We decompose sea ice variability into centennial (due to climate forcings), decadal (coupled processes in the ocean-sea ice system) and interannual time scales (atmospheric circulation). The three time scales are represented by a historical climatology from HadISST (centennial), a closest analogue approach using the coupled control run of the CCSM-3.0 model (decadal), and a statistical reconstruction based on high-pass filtered data (interannual variability), respectively. Results show that differences in the model climatology, the length of the control run, and inconsistent historical data strongly limit the quality of the product. However, with more realistic and longer simulations becoming available in the future as well as with improved historical data, useful reconstructions are possible. We suggest that hybrid approaches, using both statistical reconstruction methods and numerical models, may find wider applications in the future.


2010 ◽  
Vol 4 (1) ◽  
pp. 153-161 ◽  
Author(s):  
G. S. Dieckmann ◽  
G. Nehrke ◽  
C. Uhlig ◽  
J. Göttlicher ◽  
S. Gerland ◽  
...  

Abstract. We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3*6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard). This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This finding is an important step in the quest to quantify its impact on the sea ice driven carbon cycle and should in the future enable improvement parametrization sea ice carbon models.


2017 ◽  
Vol 15 (4) ◽  
pp. 249-268 ◽  
Author(s):  
Miyase Christensen ◽  
Annika E Nilsson

Sign in / Sign up

Export Citation Format

Share Document