Abstract 506: Hepatic Insulin Signaling Regulates ApoAI Expression Through Type I Deiodinase

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Jing Liu ◽  
Antonio Hernandez-Ono ◽  
Valerie A Galton ◽  
Henry N Ginsberg

Low HDL cholesterol is a common feature of insulin resistant states such as type 2 diabetes, but little is known about the regulation of HDL cholesterol and apoAI levels by insulin signaling. In prior studies, we observed that liver insulin receptor (Insr) knockout mice (LIRKO) had very low plasma HDL cholesterol and apoAI levels compared with their controls. HDL cholesterol levels were normalized when we restored insulin signaling by expression of constitutively active (CA) AKT1. Acute knock down of hepatic Insr by adenovirus-mediated expression of albumin-Cre in Insr flox/flox mice resulted in a marked decrease in the levels of ApoAI and Dio1 mRNA in the liver. Dio1 encodes the Type 1 deiodinase (D1), which can convert thyroxine to 3,5,3’-triiodothyronine. Adenovirus mediated overexpression of Dio1 increased HDL cholesterol and apoAI levels in LIRKO mice. D1 knockout mice exhibited a significant reduction in hepatic ApoAI mRNA levels. In McArdle cells, short interfering (si) RNA-mediated knockdown of Insr reduced both Dio1 and ApoAI mRNA levels. Knockdown of Insr by siRNA reduced luciferase activity of both hDio1 and hApoAI promoter constructs in HepG2 cells. Furthermore, siRNA-mediated knockdown of Dio1 expression also decreased hApoAI luciferase activity. These findings indicate that insulin signaling regulates the expression of both Dio1 and ApoAI, and that Dio1 regulates ApoAI expression. Reductions in ApoAI gene expression may play a role in the etiology of low HDL cholesterol levels commonly present in states of insulin resistance. Targeting D1 may be a novel way to increase apoAI and HDL cholesterol levels in people with insulin resistance or type 2 diabetes mellitus.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Guido Di Dalmazi ◽  
Uberto Pagotto ◽  
Renato Pasquali ◽  
Valentina Vicennati

Type 2 diabetes mellitus is the result of interaction between genetic and environmental factors, leading to heterogeneous and progressive pancreaticβ-cell dysfunction. Overweight and obesity are major contributors to the development of insulin resistance and impaired glucose tolerance. The inability ofβcells to secrete enough insulin produces type 2 diabetes. Abnormalities in other hormones such as reduced secretion of the incretin glucagon-like peptide 1 (GLP-1), hyperglucagonemia, and raised concentrations of other counterregulatory hormones also contribute to insulin resistance, reduced insulin secretion, and hyperglycaemia in type 2 diabetes. Clinical-overt and experimental cortisol excess is associated with profound metabolic disturbances of intermediate metabolism resulting in abdominal obesity, insulin resistance, and low HDL-cholesterol levels, which can lead to diabetes. It was therefore suggested that subtle abnormalities in cortisol secretion and action are one of the missing links between insulin resistance and other features of the metabolic syndrome. The aim of this paper is to address the role of glucocorticoids on glucose homeostasis and to explain the relationship between hypercortisolism and type 2 diabetes.


Endocrinology ◽  
2012 ◽  
Vol 153 (3) ◽  
pp. 1129-1140 ◽  
Author(s):  
Emma Burgos-Ramos ◽  
Águeda González-Rodríguez ◽  
Sandra Canelles ◽  
Eva Baquedano ◽  
Laura M. Frago ◽  
...  

Insulin resistance and type 2 diabetes correlate with impaired leptin and insulin signaling. Insulin receptor substrate-2 deficient (IRS2−/−) mice are an accepted model for the exploration of alterations in these signaling pathways and their relationship with diabetes; however, disturbances in hypothalamic signaling and the effect on neuropeptides controlling food intake remain unclear. Our aim was to analyze how leptin and insulin signaling may differentially affect the expression of hypothalamic neuropeptides regulating food intake and hypothalamic inflammation in diabetic (D) and nondiabetic (ND) IRS2−/− mice. We analyzed the activation of leptin and insulin targets by Western blotting and their association by immunoprecipitation, as well as the mRNA levels of neuropeptide Y (NPY), proopiomelanocortin, and inflammatory markers by real-time PCR and colocalization of forkhead box protein O1 (FOXO1) and NPY by double immunohistochemistry in the hypothalamus. Serum leptin and insulin levels and hypothalamic Janus kinase 2 and signal transducer and activator of transcription factor 3 activation were increased in ND IRS2−/− mice. IRS1 levels and its association with Janus kinase 2 and p85 and protein kinase B activation were increased in ND IRS2−/−. Increased FOXO1 positively correlated with NPY mRNA levels in D IRS2−/− mice, with FOXO1 showing mainly nuclear localization in D IRS2−/− and cytoplasmic in ND IRS2−/− mice. D IRS2−/− mice exhibited higher hypothalamic inflammation markers than ND IRS2−/− mice. In conclusion, differential activation of these pathways and changes in the expression of NPY and inflammation may exert a protective effect against hypothalamic deregulation of appetite, suggesting that manipulation of these targets could be of interest in the treatment of insulin resistance and type 2 diabetes.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1236
Author(s):  
Jesús Burillo ◽  
Patricia Marqués ◽  
Beatriz Jiménez ◽  
Carlos González-Blanco ◽  
Manuel Benito ◽  
...  

Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer’s disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.


2008 ◽  
Vol 11 (5) ◽  
pp. 505-516 ◽  
Author(s):  
Nicole Y. Souren ◽  
Maurice P. Zeegers ◽  
Rob G. J. H. Janssen ◽  
Anja Steyls ◽  
Marij Gielen ◽  
...  

AbstractInsulin resistance and obesity are underlying causes of type 2 diabetes and therefore much interest is focused on the potential genes involved. A series of anthropometric and metabolic characteristic were measured in 240 MZ and 112 DZ twin pairs recruited from the East Flanders Prospective Twin Survey. Microsatellite markers located close to ABCC8, ADIPOQ, GCK, IGF1, IGFBP1, INSR, LEP, LEPR, PPARγ and the RETN gene were genotyped. Univariate single point variance components linkage analyses were performed using two methods: (1) the standard method, only comprising the phenotypic and genotypic data of the DZ twin pairs and (2) the extended method, also incorporating the phenotypic data of the MZ twin pairs. Suggestive linkages (LOD > 1) were observed between the ABCC8 marker and waist-to-hip ratio and HDL-cholesterol levels. Both markers flanking ADIPOQ showed suggestive linkage with triglycerides levels, the upstream marker also with body mass and HDL-cholesterol levels. The IGFBP1 marker showed suggestive linkage with fat mass, fasting insulin and leptin levels and the LEP marker showed suggestive linkage with birth weight. This study suggests that DNA variants in ABCC8, ADIPOQ, IGFBP1 and LEP gene region may predispose to type 2 diabetes. In addition, the two methods used to perform linkage analyses yielded similar results. This was however not the case for birth weight where chorionicity seems to be an important confounder.


2020 ◽  
Vol 8 (2) ◽  
pp. 66-72
Author(s):  
Angiesta Pinakesty ◽  
Restu Noor Azizah

Introduction: Diabetes mellitus (DM) is a non-communicable disease that has increased from year to year. Type 2 diabetes mellitus is not caused by lack of insulin secretion, but is caused by the failure of the body's cells to respond to the hormone insulin (insulin resistance). Insulin resistance was found to be a major contributor to atherogenic dyslipidemia. Dyslipidemia in DM risks 2 to 4 times higher than non-DM. Although dyslipidemia has a great risk for people with type 2 diabetes mellitus, this conventional risk factor only explains a portion (25%) of excess cardiovascular risk in type 2 DM. Discussion: In uncontrolled type 2 DM patients, LDL oxidation occurs faster which results from an increase in chronic blood glucose levels. Glycemic control as a determinant of DM progressivity is determined through HbA1c examination. HbA1c levels are associated with blood triglyceride levels. Meanwhile, triglyceride levels are associated with total cholesterol and HDL cholesterol levels. HbA1c levels are also associated with LDL cholesterol levels. Conclusion: There is a relationship between lipid profile and the progression of type 2 diabetes mellitus.   Keywords: type 2 diabetes mellitus, dyslipidemia, HbA1c, glycemic control, lipid profile


2021 ◽  
Author(s):  
Qian Zhou ◽  
Wan-Wan Sun ◽  
Jia-Cong Chen ◽  
Huilu Zhang ◽  
Jie Liu ◽  
...  

Abstract Although elevated circulating amino acids are associated with the onset of type 2 diabetes (T2D), how amino acids act on cell insulin signaling and glucose uptake remains unclear. Herein, we report that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signaling and glucose uptake. Mice fed phenylalanine-rich chow or overexpressing human phenylalanyl-tRNA synthetase (hFARS) developed insulin resistance and symptoms of T2D. Mechanistically, FARS phenylalanylated lysine 1057/1079 of IRβ (F-K1057/1079) inactivated IRβ and prevented insulin from generating insulin signaling to promote glucose uptake by cells. SIRT1 reversed F-K1057/1079 and counteracted the insulin-inactivating effects of hFARS and phenylalanine. F-K1057/1079 and SIRT1 levels of white cells of T2D patients’ blood samples were positively and negatively correlated with T2D onset, respectively. Blocking F-K1057/1079 with phenylalaninol sensitized insulin signaling and relieved T2D symptoms in hFARS-transgenic and db/db mice. We revealed mechanisms of how phenylalanylation inactivates insulin signaling that may be employed to control T2D.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Sophie E Piper ◽  
James M Leiper

Type 2 diabetes is a prevalent metabolic condition and is the result of an impaired response to insulin. Insulin resistance and type 2 diabetes are clearly associated with obesity and the secondary cardiovascular complications of this condition are serious and life threatening. Asymemetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthases and increased levels are seen in multiple pathologies. Increased plasma levels of ADMA have been associated with patients with type 2 diabetes, insulin resistance and obesity, although a causal link between ADMA and diabetes has not been established. Dimethylarginine dimethylaminohydrolase (DDAH) is the enzyme that catalyses the metabolism of ADMA. There are two isoforms of the enzyme which are both involved in the control of ADMA and NO. The interplay of insulin with NO release is well established but the initial causes for the onset of insulin resistance are not well defined. Elevated levels of ADMA are linked to insulin resistance and transgenic mice that over-express ddah1 show increased insulin sensitivity. Of note is that metformin, an insulin sensitising drug that is widely used in the treatment of insulin resistance, reduces plasma glucose and ADMA concentrations. In order to elucidate the physiological role of DDAH1 in glucose homeostasis we investigated the glucose handling in a ddah1 global knockout model. Intra-peritoneal glucose tolerance tests in ddah1 global knockout mice demonstrate insulin resistance. Baseline plasma glucose levels were 25% higher in ddah1 knockouts and peak levels were 53% higher in ddah1 knockouts. The kinetics of plasma glucose accumulation and clearance in ddah1 knockout mice suggests dysfunction in both the liver and skeletal muscle. On a normal chow diet, hepatocyte specific ddah1 knockout mice and skeletal muscle specific ddah1 knockout mice show no insulin resistance. On a high fat diet however the hepatocyte specific ddah1 knockout mice show significant insulin resistance and lower metabolic rate than their fat fed wild-type counterparts. These studies demonstrate for the first time a causal link between ADMA accumulation and insulin resistance. Furthermore these data establish DDAH1 activity is a significant regulator of insulin resistance.


2021 ◽  
Author(s):  
Yu-Hua Tseng ◽  
Lee-Ming Chuang ◽  
Yi-Cheng Chang ◽  
Meng-Lun Hsieh ◽  
Lun Tsou ◽  
...  

Abstract Insulin resistance and obesity are pivotal features of type 2 diabetes mellitus. Peroxisome proliferator-activated receptor γ (PPARγ) is a master transcriptional regulator of systemic insulin sensitivity and energy balance. The anti-diabetic drug thiazolidinediones are potent synthetic PPARγ ligands and insulin sensitizers with undesirable side effects including increased adiposity, fluid retention, and osteoporosis, which limit their clinical use. We and others have proved that 15-keto-PGE2 is an endogenous natural PPARγ ligand. 15-keto-PGE2 is catalyzed by prostaglandin reductase 2 (PTGR2) to become inactive metabolites. We found that 15-keto-PGE2 level is increased in Ptgr2 knockout mice. Ptgr2 knockout mice were protected from diet-induced obesity, insulin resistance, and hepatic steatosis without fluid retention nor reduced bone mineral density. Diet-induced obese mice have drastically reduced 15-keto-PGE2 levels compared to lean mice. Administration of 15-keto-PGE2 markedly improved insulin sensitivity and prevented diet-induced obesity in mice. We demonstrated that 15-keto-PGE2 activates PPARγ through covalent binding to its cysteine 285 residue at helix 3, which restrained its binding pocket between helix 3 and β-sheets of the PPARγ ligand binding domain. This binding mode differs from the helix12-dependent binding mode of thiazolidinediones. We further identified a small-molecule PTGR2 inhibitor BPRPT245, which interferes the interaction between the substrate-binding sites of PTGR2 and 15-keto-PGE2. BPRPT245 increased 15-keto-PGE2 concentration, activated PPARγ, and promoted glucose uptake in adipocytes. BPRPT245 also prevented diet-induced obesity, improved insulin sensitivity and glucose tolerance, lowers fasting glucose without fluid retention and osteoporosis. In humans, reduced serum 15-keto-PGE2 levels were observed in patients with type 2 diabetes compared with controls. Furthermore, serum 15-keto-PGE2 levels correlate inversely with insulin resistance and fasting glucose in non-diabetic humans. In conclusion, we identified a new therapeutic approach to improve insulin sensitivity and protect diet-induced obesity through increasing endogenous natural PPARγ ligands without side effects of thiazolidinediones.


Sign in / Sign up

Export Citation Format

Share Document