Abstract 1: Molecular Basis of Hypertriglyceridemia Associated with the APOA5 c553.G>T SNP

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Vineeta Sharma ◽  
Trudy M Forte ◽  
Robert O Ryan

Objectives Apolipoprotein (apo) A-V is a low abundance protein with profound effects on plasma triglyceride (TG) levels. Several APOA5 SNPs correlate with hypertriglyceridemia (HTG). The c.553 G>T SNP, substituting a Cys for Gly at position 162 of mature apoA-V, is prevalent in Asian populations and correlates with HTG. To investigate the mechanism underlying this association, gene transfer studies were performed in apoa5-/- mice. Methods Adeno-associated virus (AAV2/8) harboring the coding sequence for wild type apoA-V (AAV2/8-apoA-V), G162C apoA-V (AAV2/8-G162C) and LacZ (AAV2/8-LacZ) were injected (1x10e12 virus genome) into the tail vein of 8 apoa5-/- mice per group. Blood samples were collected weekly for 4 weeks and TG and apoA-V levels measured. FPLC was performed on plasma obtained from AAV2/8-apoA-V and AAV2/8-G162C mice. VLDL, LDL, HDL and the lipoprotein-free region were characterized. Results Compared to AAV2/8-LacZ mice, AAV2/8-apoA-V mice had significantly lower plasma TG levels (50% ±5). Unlike AAV2/8-apoA-V, mice injected with AAV2/8-G162C displayed little or no reduction in TG despite similar amounts of plasma apoA-V protein. Immunoblot analysis of FPLC fractionated plasma revealed that, whereas wild-type apoA-V was lipoprotein associated (VLDL and HDL), G162C apoA-V was largely recovered in the lipoprotein-free fraction. Immunoblot analysis following SDS-PAGE under non-reducing conditions revealed that lipoprotein-associated wild type apoA-V and G162C apoA-V are monomeric; by contrast, the electrophoretic mobility of G162C apoA-V recovered in the lipoprotein-free fraction was retarded. Conclusions Gene transfer of wild type apoA-V induces a significant reduction in plasma TG levels of apoa5-/- mice. By contrast, G162C apoA-V failed to induce a corresponding decrease in plasma TG, recapitulating effects observed in human populations harboring this SNP. The propensity of G162C apoA-V to form a disulfide bond with one or more plasma proteins interferes with its lipoprotein binding ability, resulting in loss of function. The results provide a molecular explanation for HTG associated with a common APOA5 SNP. The gene transfer strategy employed provides a platform for studies of other common apoA-V SNPs.

1999 ◽  
Vol 181 (2) ◽  
pp. 368-374 ◽  
Author(s):  
Michael G. Thomas ◽  
George A. O’Toole ◽  
Jorge C. Escalante-Semerena

ABSTRACT The eutF locus of Salmonella typhimuriumLT2 was identified as a locus necessary for the utilization of ethanolamine as a sole carbon source. Initial models suggested that EutF was involved in either ethanolamine transport or was a transcriptional regulator of an ethanolamine transporter. Phenotypic characterization of eutF mutants suggested EutF was somehow involved in 1,2-propanediol, propionate, and succinate utilization. Here we provide evidence that two alleles defining the eutFlocus, Δ903 and eutF1115, are partial-loss-of-function tonB alleles. Both mutations were complemented by plasmids containing a wild-type allele of theEscherichia coli tonB gene. Immunoblot analysis using TonB monoclonal antibodies detected a TonB fusion protein in strains carrying eutF alleles. Molecular analysis of the Δ903 allele identified a deletion that resulted in the fusion of the 3′ end of tonB with the 3′ end oftrpA. In-frame translation of the tonB-trpAfusion resulted in the final 9 amino acids of TonB being replaced by a 45-amino-acid addition. We isolated a derivative of a strain carrying allele Δ903 that regained the ability to grow on ethanolamine as a carbon and energy source. The molecular characterization of the mutation that corrected the Eut−phenotype caused by allele Δ903 showed that the new mutation was a deletion of two nucleotides at the tonB-trpAfusion site. This deletion resulted in a frameshift that replaced the 45-amino-acid addition with a 5-amino-acid addition. This change resulted in a TonB protein with sufficient activity to restore growth on ethanolamine and eut operon expression to nearly wild-type levels. It was concluded that the observed EutF phenotypes were due to the partial loss of TonB function, which is proposed to result in reduced cobalamin and ferric siderophore transport in an aerobic environment; thus, the eutF locus does not exist.


2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Xinwen Zhang ◽  
Shaozhi Zhao ◽  
Hongwei Liu ◽  
Xiaoyan Wang ◽  
Xiaolei Wang ◽  
...  

Fucosidosis is a rare lysosomal storage disorder characterized by deficiency of α-L-fucosidase with an autosomal recessive mode of inheritance. Here, we describe a 4-year-old Chinese boy with signs and symptoms of fucosidosis but his parents were phenotypically normal. Whole exome sequencing (WES) identified a novel homozygous single nucleotide deletion (c.82delG) in the exon 1 of the FUCA1 gene. This mutation will lead to a frameshift which will result in the formation of a truncated FUCA1 protein (p.Val28Cysfs*105) of 132 amino acids approximately one-third the size of the wild type FUCA1 protein (466 amino acids). Both parents were carrying the mutation in a heterozygous state. This study expands the mutational spectrum of the FUCA1 gene associated with fucosidosis and emphasises the benefits of WES for accurate and timely clinical diagnosis of this rare disease.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


Author(s):  
Daria Nitarska ◽  
Robert Boehm ◽  
Thomas Debener ◽  
Rares Calin Lucaciu ◽  
Heidi Halbwirth

AbstractThe CRISPR/Cas9 system is a remarkably promising tool for targeted gene mutagenesis, and becoming ever more popular for modification of ornamental plants. In this study we performed the knockout of flavonoid 3′-hydroxylase (F3′H) with application of CRISPR/Cas9 in the red flowering poinsettia (Euphorbia pulcherrima) cultivar ‘Christmas Eve’, in order to obtain plants with orange bract colour, which accumulate prevalently pelargonidin. F3′H is an enzyme that is necessary for formation of cyanidin type anthocyanins, which are responsible for the red colour of poinsettia bracts. Even though F3′H was not completely inactivated, the bract colour of transgenic plants changed from vivid red (RHS 45B) to vivid reddish orange (RHS 33A), and cyanidin levels decreased significantly compared with the wild type. In the genetically modified plants, an increased ratio of pelargonidin to cyanidin was observed. By cloning and expression of mutated proteins, the lack of F3′H activity was confirmed. This confirms that a loss of function mutation in the poinsettia F3′H gene is sufficient for obtaining poinsettia with orange bract colour. This is the first report of successful use of CRISPR/Cas9 for genome editing in poinsettia.


Genetics ◽  
1993 ◽  
Vol 135 (2) ◽  
pp. 321-326 ◽  
Author(s):  
H Mitsuzawa

Abstract The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity cAMP phosphodiesterases, respectively. In addition, P-28-24C was found to carry a mutation conferring slow growth that lies in CYR1, which encodes adenylate cyclase, and the slow growth phenotype caused by the cyr1 mutation was suppressed by the pde2 mutation. Therefore P-28-24C is fortuitously a pde1 pde2 cyr1 triple mutant. Responsiveness to cAMP conferred by pde mutations suggests that S. cerevisiae cells are permeable to cAMP to some extent and that the apparent absence of effect of exogenously added cAMP on wild-type cells is due to immediate degradation by cAMP phosphodiesterases.


1999 ◽  
Vol 380 (6) ◽  
Author(s):  
S.L. Nutt ◽  
M. Busslinger

AbstractIt is generally assumed that most mammalian genes are transcribed from both alleles. Hence, the diploid state of the genome offers the advantage that a loss-of-function mutation in one allele can be compensated for by the remaining wild-type allele of the same gene. Indeed, the vast majority of human disease syndromes and engineered mutations in the mouse genome are recessive, indicating that recessiveness is the ‘default’ state. However, a minority of genes are semi-dominant, as heterozygous loss-of-function mutation in these genes leads to phenotypic abnormalities. This condition, known as haploinsufficiency, has been described for five of the nine mammalian


2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


Sign in / Sign up

Export Citation Format

Share Document