Abstract 75: Somatic Overexpression and Knockdown in Mice to Identify Causal Genes Underlying 26 Lipid-associated Loci

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Evanthia Pashos ◽  
Ioannis M Stylianou ◽  
Dawn Marchadier ◽  
Antonino Picataggi ◽  
Valeska S Redon ◽  
...  

Genome-wide association studies (GWAS) have identified 95 loci in the human genome that harbor common variants associated with plasma lipid traits. Of the 95 loci, 17 harbor genes known to cause monogenic lipid disorders and collectively a third of them contain genes with characterized roles in lipid metabolism. Therefore in the majority of loci the causal genes are unknown. We selected 32 genes, not previously implicated in lipid metabolism and representing a total of 26 loci, to test for their ability to modify plasma lipid concentrations upon somatic overexpression in vivo. We utilized adeno-associated virus serotype 8 (AAV8) to overexpress the selected genes specifically in the livers of both C57BL/6 mice and in an appropriate humanized mouse model (either mice expressing human apolipoprotein A-I for HDL loci or Apobec1-knockout, Ldlr haploinsufficient mice expressing human apolipoprotein B-100 for triglyceride and LDL loci). Approximately half of the genes tested reproducibly affected plasma lipids. For 13 of the interrogated loci the lipid-associated variants also correlated with expression variations of the respective genes in liver (liver expression quantitative trait loci-eQTLs). We demonstrate a causal role for 7 of these 13 genes. The overexpression of these 7 genes not only affected the predicted lipid class, but additionally exerted its effect in the predicted direction in 6 of 7 cases (Tmem57, Slc39a8, Ppp1r3b, Vkorc1, Tbkbp1 and Ube2l3). Additionally for a subset of the examined genes we proceeded to develop small interfering RNA (siRNA) nanoparticles that were particularly targeted to the liver. We were able to obtain robust knockdown for a significant number of genes and, in several cases, observe reciprocal effects on plasma lipids from our overexpression and knockdown studies. This work has identified several novel lipid regulators, whose further investigation can uncover novel mechanisms and pathways controlling plasma lipids.

2015 ◽  
Vol 43 (5) ◽  
pp. 1079-1084 ◽  
Author(s):  
Robert C. Bauer ◽  
Batuhan O. Yenilmez ◽  
Daniel J. Rader

The protein tribbles-1, encoded by the gene TRIB1, is increasingly recognized as a major regulator of multiple cellular and physiological processes in humans. Recent human genetic studies, as well as molecular biological approaches, have implicated this intriguing protein in the aetiology of multiple human diseases, including myeloid leukaemia, Crohn's disease, non-alcoholic fatty liver disease (NAFLD), dyslipidaemia and coronary artery disease (CAD). Genome-wide association studies (GWAS) have repeatedly identified variants at the genomic TRIB1 locus as being significantly associated with multiple plasma lipid traits and cardiovascular disease (CVD) in humans. The involvement of TRIB1 in hepatic lipid metabolism has been validated through viral-mediated hepatic overexpression of the gene in mice; increasing levels of TRIB1 decreased plasma lipids in a dose-dependent manner. Additional studies have implicated TRIB1 in the regulation of hepatic lipogenesis and NAFLD. The exact mechanisms of TRIB1 regulation of both plasma lipids and hepatic lipogenesis remain undetermined, although multiple signalling pathways and transcription factors have been implicated in tribbles-1 function. Recent reports have been aimed at developing TRIB1-based lipid therapeutics. In summary, tribbles-1 is an important modulator of human energy metabolism and metabolic syndromes and worthy of future studies aimed at investigating its potential as a therapeutic target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martina Rauner ◽  
Ines Foessl ◽  
Melissa M. Formosa ◽  
Erika Kague ◽  
Vid Prijatelj ◽  
...  

The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits (“endophenotypes”), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Mikhaila A Smith ◽  
Jian Cui ◽  
Sumeet A Kheterpal ◽  
Daniel J Rader ◽  
Robert C Bauer

Tribbles-1 (TRIB1) was recently identified through genome-wide association studies as a novel mediator of plasma lipids and coronary artery disease in humans. While subsequent in vivo mouse work confirmed a role for hepatic TRIB1 in these associations, little is known about metabolic roles for extra-hepatic Trib1. Interestingly, SNPs near the TRIB1 gene are significantly associated with circulating adiponectin levels in humans, suggesting a metabolic role for adipose TRIB1 . To further investigate this, we generated adipose-specific Trib1 KO mice (Trib1_ASKO) by crossing Trib1 cKO mice to transgenic Adiponectin-Cre mice. Chow-fed Trib1_ASKO mice exhibited no differences in adipose tissue mass and overall body mass as compared to control littermates (N=8/group). However, Trib1_ASKO mice had reduced total (-16.9%, p <0.01), HDL (-16.7%, p <0.01), and non-HDL cholesterol (-17.3%, p =0.068), as well as plasma triglycerides (-28.6%, p <0.001) as compared to WT mice. Trib1_ASKO mice also had increased plasma adiponectin levels, a finding more pronounced in female mice (+33.3%, p <0.001) than in males (+16.4%, p =0.072). Despite this increase, transcript levels of adipoQ were moderately decreased in Trib1_ASKO mice, suggesting a post-transcriptional mode of regulation. Transcript and protein levels of C/EBPα, the best described target of Trib1 and a key regulator of adipogenesis, remained unchanged. To further investigate the metabolic consequences of adipose-specific KO of Trib1 , WT and Trib1_ASKO mice were fed high-fat diet (HFD, 45% kCal fat) for 12 weeks to induce obesity. HFD-fed Trib1_ASKO mice had reduced fasting plasma glucose (-22.3%, p <0.05), insulin (-38.2%, p <0.05), and glucose tolerance (-19.8% AUC, p <0.05) compared to control mice. Body mass and fat mass of HFD-fed Trib1_ASKO mice remained unchanged from WT, and the reductions in plasma lipids and increase in plasma adiponectin persisted in the HFD-fed state. In summary, we present here the first in vivo validation of the human genetic association between TRIB1 and plasma adiponectin, and provide evidence suggesting that adipose TRIB1 contributes to the genetic associations observed in humans between TRIB1 and multiple metabolic parameters.


Author(s):  
Muath Alanbaei ◽  
Mohamed Abu-Farha ◽  
Prashantha Hebbar ◽  
Motasem Melhem ◽  
Betty S Chandy ◽  
...  

ANGPTL3 is an important regulator of lipid metabolism. Its inhibition in people with hypercholesteremia reduces plasma lipid levels dramatically. Genome-wide association studies have associated ANGPTL3 variants with lipid traits. Irisin, an exercise modulated protein, has been associated with lipid metabolism. Intracellular accumulation of lipids impairs insulin action and contributes to metabolic disorders. In this study, we evaluate the impact of ANGPTL3 variants on levels of irisin and markers associated with lipid metabolism and insulin resistance. ANGPTL3 rs1748197 and rs12130333 variants were genotyped in a cohort of 278 Arab individuals from Kuwait. Levels of irisin and other metabolic markers were measured by ELISA. Significance of association signals was assessed using Bonferroni-corrected P-values and empirical P-values. The study variants were significantly associated with low levels of c-peptide and irisin. Levels of c-peptide and irisin were mediated by interaction between carrier genotypes (GA+AA) at rs1748197 and measures of IL13 and TG, respectively. While levels of c-peptide and IL13 were directly correlated in individuals with reference genotype, they were inversely correlated in individuals with carrier genotype. Irisin correlated positively with TG which is strong in individuals with carrier genotypes. These observations illustrate ANGPTL3 as a potential link connecting lipid metabolism, insulin resistance and cardioprotection.


2017 ◽  
pp. S101-S111 ◽  
Author(s):  
J. A. HUBACEK ◽  
V. ADAMKOVA ◽  
V. LANSKA ◽  
D. DLOUHA

Since 2007, the year of their first widespread use, genome-wide association studies (GWAS) have become the “gold standard” for the detection of causal genes and polymorphisms in all fields of human medicine. Cardiovascular disease (CVD), one of the major causes of morbidity and mortality, is no exception. The first GWAS focused on hypercholesterolemia and dyslipidemia as the major CVD determinants. GWAS confirm the importance of most of the previously identified genes (e.g. APOE, APOB, LDL-R) and recognize the importance of new genetic determinants (e.g. within the CILP2 or SORT1 gene clusters). Nevertheless, the results of GWAS still require confirmation by independent studies, as interethnic and interpopulation variability of SNP effects have been reported. We analyzed an association between eight variants within seven through GWAs detected loci and plasma lipid values in the Czech post-MONICA population sample (N=2,559). We confirmed an association (all P<0.01) between plasma LDL-cholesterol values and variants within the CILP2 (rs16996148), SORT1 (rs646776), APOB (rs693), APOE (rs4420638) and LDL-R (rs6511720) genes in both males (N=1,194) and females (N=1,368). In contrast, variants within the APOB (rs515135), PCSK9 (rs11206510) and HMGCoAR (rs12654264) genes did not significantly affect plasma lipid values in Czech males or females. Unweighted gene score values were linearly associated with LDL-cholesterol values both in males (P<0.0005) and females (P<0.00005). We confirmed the effects of some, but not all analyzed SNPs on LDL-cholesterol levels, reinforcing the necessity for replication studies of GWA-detected gene variants.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 755
Author(s):  
Muath Alanbaei ◽  
Mohamed Abu-Farha ◽  
Prashantha Hebbar ◽  
Motasem Melhem ◽  
Betty S. Chandy ◽  
...  

ANGPTL3 is an important regulator of lipid metabolism. Its inhibition in people with hypercholesteremia reduces plasma lipid levels dramatically. Genome-wide association studies have associated ANGPTL3 variants with lipid traits. Irisin, an exercise-modulated protein, has been associated with lipid metabolism. Intracellular accumulation of lipids impairs insulin action and contributes to metabolic disorders. In this study, we evaluate the impact of ANGPTL3 variants on levels of irisin and markers associated with lipid metabolism and insulin resistance. ANGPTL3 rs1748197 and rs12130333 variants were genotyped in a cohort of 278 Arab individuals from Kuwait. Levels of irisin and other metabolic markers were measured by ELISA. Significance of association signals was assessed using Bonferroni-corrected p-values and empirical p-values. The study variants were significantly associated with low levels of c-peptide and irisin. Levels of c-peptide and irisin were mediated by interaction between carrier genotypes (GA + AA) at rs1748197 and measures of IL13 and TG, respectively. While levels of c-peptide and IL13 were directly correlated in individuals with the reference genotype, they were inversely correlated in individuals with the carrier genotype. Irisin correlated positively with TG and was strong in individuals with carrier genotypes. These observations illustrate ANGPTL3 as a potential link connecting lipid metabolism, insulin resistance and cardioprotection.


2012 ◽  
Vol 82 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Y. Kim ◽  
H. Shin ◽  
S. Lee

In the present study, the nutritional quality of four grains including adlay (AD), buckwheat (BW), glutinous barley (GB), and white rice (WR) were evaluated in terms of plasma lipid parameters, gut transit time, and thickness of the aortic wall in rats. The rats were then raised for 4 weeks on the high-fat diet based on the American Institute of Nutrition-93 (AIN-93 G) diets containing 1 % cholesterol and 20 % dietary lipids. Forty male rats were divided into 4 groups and raised for 4 weeks with a diet containing one of the following grains: WR, AD, BW, or WB. The level of thiobarbituric acid-reactive substances (TBARS) in liver was shown to be higher in rats by the order of those fed WR, AD, GB, and BW. This indicates that other grains decreased oxidative stress in vivo more than WR. The superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase levels in the AD, BW, and GB groups were significantly higher than those in the WR group (p < 0.05). Plasma lipid profiles differed significantly according to grain combination, and decreased aortic wall thickness was consistent with the finding of decreased plasma low-density lipoprotein cholesterol (LDL-C) (p < 0.05) and increased high-density lipoprotein (HDL-C) in rats fed AD, BW, and GB (p < 0.001). The antioxidant and hypolipidemic capacities of grains are quite high, especially those of adlay, buckwheat, and glutinous barley. In conclusion, this study has demonstrated that the whole grains had a cardioprotective effect. This effect was related to several mechanisms that corresponded to lowering plasma lipids, decreasing TBARS, and increasing antioxidant activities.


2020 ◽  
Vol 36 (9) ◽  
pp. 2936-2937 ◽  
Author(s):  
Gareth Peat ◽  
William Jones ◽  
Michael Nuhn ◽  
José Carlos Marugán ◽  
William Newell ◽  
...  

Abstract Motivation Genome-wide association studies (GWAS) are a powerful method to detect even weak associations between variants and phenotypes; however, many of the identified associated variants are in non-coding regions, and presumably influence gene expression regulation. Identifying potential drug targets, i.e. causal protein-coding genes, therefore, requires crossing the genetics results with functional data. Results We present a novel data integration pipeline that analyses GWAS results in the light of experimental epigenetic and cis-regulatory datasets, such as ChIP-Seq, Promoter-Capture Hi-C or eQTL, and presents them in a single report, which can be used for inferring likely causal genes. This pipeline was then fed into an interactive data resource. Availability and implementation The analysis code is available at www.github.com/Ensembl/postgap and the interactive data browser at postgwas.opentargets.io.


2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


Author(s):  
Fernanda M Bosada ◽  
Mathilde R Rivaud ◽  
Jae-Sun Uhm ◽  
Sander Verheule ◽  
Karel van Duijvenboden ◽  
...  

Rationale: Atrial Fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Genome-wide association studies have identified AF-associated common variants across 100+ genomic loci, but the mechanism underlying the impact of these variant loci on AF susceptibility in vivo has remained largely undefined. One such variant region, highly associated with AF, is found at 1q24, close to PRRX1, encoding the Paired Related Homeobox 1 transcription factor. Objective: To identify the mechanistic link between the variant region at 1q24 and AF predisposition. Methods and Results: The mouse orthologue of the noncoding variant genomic region (R1A) at 1q24 was deleted using CRISPR genome editing. Among the genes sharing the topologically associated domain with the deleted R1A region (Kifap3, Prrx1, Fmo2, Prrc2c), only the broadly expressed gene Prrx1 was downregulated in mutants, and only in cardiomyocytes. Expression and epigenetic profiling revealed that a cardiomyocyte lineage-specific gene program (Mhrt, Myh6, Rbm20, Tnnt2, Ttn, Ckm) was upregulated in R1A-/- atrial cardiomyocytes, and that Mef2 binding motifs were significantly enriched at differentially accessible chromatin sites. Consistently, Prrx1 suppressed Mef2-activated enhancer activity in HL-1 cells. Mice heterozygous or homozygous for the R1A deletion were susceptible to atrial arrhythmia induction, had atrial conduction slowing and more irregular RR intervals. Isolated R1A-/- mouse left atrial cardiomyocytes showed lower action potential upstroke velocities and sodium current, as well as increased systolic and diastolic calcium concentrations compared to controls. Conclusions: The noncoding AF variant region at 1q24 modulates Prrx1 expression in cardiomyocytes. Cardiomyocyte-specific reduction of Prrx1 expression upon deletion of the noncoding region leads to a profound induction of a cardiac lineage-specific gene program and to propensity for AF. These data indicate that AF-associated variants in humans may exert AF predisposition through reduced PRRX1 expression in cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document