scholarly journals The open targets post-GWAS analysis pipeline

2020 ◽  
Vol 36 (9) ◽  
pp. 2936-2937 ◽  
Author(s):  
Gareth Peat ◽  
William Jones ◽  
Michael Nuhn ◽  
José Carlos Marugán ◽  
William Newell ◽  
...  

Abstract Motivation Genome-wide association studies (GWAS) are a powerful method to detect even weak associations between variants and phenotypes; however, many of the identified associated variants are in non-coding regions, and presumably influence gene expression regulation. Identifying potential drug targets, i.e. causal protein-coding genes, therefore, requires crossing the genetics results with functional data. Results We present a novel data integration pipeline that analyses GWAS results in the light of experimental epigenetic and cis-regulatory datasets, such as ChIP-Seq, Promoter-Capture Hi-C or eQTL, and presents them in a single report, which can be used for inferring likely causal genes. This pipeline was then fed into an interactive data resource. Availability and implementation The analysis code is available at www.github.com/Ensembl/postgap and the interactive data browser at postgwas.opentargets.io.

Author(s):  
Edward Mountjoy ◽  
Ellen M. Schmidt ◽  
Miguel Carmona ◽  
Gareth Peat ◽  
Alfredo Miranda ◽  
...  

AbstractGenome-wide association studies (GWAS) have identified many variants robustly associated with complex traits but identifying the gene(s) mediating such associations is a major challenge. Here we present an open resource that provides systematic fine-mapping and protein-coding gene prioritization across 133,441 published human GWAS loci. We integrate diverse data sources, including genetics (from GWAS Catalog and UK Biobank) as well as transcriptomic, proteomic and epigenomic data across many tissues and cell types. We also provide systematic disease-disease and disease-molecular trait colocalization results across 92 cell types and tissues and identify 729 loci fine-mapped to a single coding causal variant and colocalized with a single gene. We trained a machine learning model using the fine mapped genetics and functional genomics data using 445 gold standard curated GWAS loci to distinguish causal genes from background genes at the same loci, outperforming a naive distance based model. Genes prioritized by our model are enriched for known approved drug targets (OR = 8.1, 95% CI: [5.7, 11.5]). These results will be regularly updated and are publicly available through a web portal, Open Targets Genetics (OTG, http://genetics.opentargets.org), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Tianjiao Zhang ◽  
Yang Hu ◽  
Xiaoliang Wu ◽  
Rui Ma ◽  
Qinghua Jiang ◽  
...  

Many disease-related single nucleotide polymorphisms (SNPs) have been inferred from genome-wide association studies (GWAS) in recent years. Numerous studies have shown that some SNPs located in protein-coding regions are associated with numerous diseases by affecting gene expression. However, in noncoding regions, the mechanism of how SNPs contribute to disease susceptibility remains unclear. Enhancer elements are functional segments of DNA located in noncoding regions that play an important role in regulating gene expression. The SNPs located in enhancer elements may affect gene expression and lead to disease. We presented a method for identifying liver cancer-related enhancer SNPs through integrating GWAS and histone modification ChIP-seq data. We identified 22 liver cancer-related enhancer SNPs, 9 of which were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Frida Lona-Durazo ◽  
Marla Mendes ◽  
Rohit Thakur ◽  
Karen Funderburk ◽  
Tongwu Zhang ◽  
...  

AbstractHair colour is a polygenic phenotype that results from differences in the amount and ratio of melanins located in the hair bulb. Genome-wide association studies (GWAS) have identified many loci involved in the pigmentation pathway affecting hair colour. However, most of the associated loci overlap non-protein coding regions and many of the molecular mechanisms underlying pigmentation variation are still not understood. Here, we conduct GWAS meta-analyses of hair colour in a Canadian cohort of 12,741 individuals of European ancestry. By performing fine-mapping analyses we identify candidate causal variants in pigmentation loci associated with blonde, red and brown hair colour. Additionally, we observe colocalization of several GWAS hits with expression and methylation quantitative trait loci (QTLs) of cultured melanocytes. Finally, transcriptome-wide association studies (TWAS) further nominate the expression of EDNRB and CDK10 as significantly associated with hair colour. Our results provide insights on the mechanisms regulating pigmentation biology in humans.


2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Kyuto Sonehara ◽  
Yukinori Okada

AbstractGenome-wide association studies have identified numerous disease-susceptibility genes. As knowledge of gene–disease associations accumulates, it is becoming increasingly important to translate this knowledge into clinical practice. This challenge involves finding effective drug targets and estimating their potential side effects, which often results in failure of promising clinical trials. Here, we review recent advances and future perspectives in genetics-led drug discovery, with a focus on drug repurposing, Mendelian randomization, and the use of multifaceted omics data.


Author(s):  
Elle M Weeks ◽  
Jacob C Ulirsch ◽  
Nathan Y Cheng ◽  
Brian L Trippe ◽  
Rebecca S Fine ◽  
...  

Genome-wide association studies (GWAS) are a valuable tool for understanding the biology of complex traits, but the associations found rarely point directly to causal genes. Here, we introduce a new method to identify the causal genes by integrating GWAS summary statistics with gene expression, biological pathway, and predicted protein-protein interaction data. We further propose an approach that effectively leverages both polygenic and locus-specific genetic signals by combining results across multiple gene prioritization methods, increasing confidence in prioritized genes. Using a large set of gold standard genes to evaluate our approach, we prioritize 8,402 unique gene-trait pairs with greater than 75% estimated precision across 113 complex traits and diseases, including known genes such as SORT1 for LDL cholesterol, SMIM1 for red blood cell count, and DRD2 for schizophrenia, as well as novel genes such as TTC39B for cholelithiasis. Our results demonstrate that a polygenic approach is a powerful tool for gene prioritization and, in combination with locus-specific signal, improves upon existing methods.


2011 ◽  
Vol 26 (S2) ◽  
pp. 1346-1346
Author(s):  
D. Benmessaoud ◽  
A.-M. Lepagnol-Bestel ◽  
M. Delepine ◽  
J. Hager ◽  
J.-M. Moalic ◽  
...  

Genome wide association studies (GWAS) of Schizophrenia (SZ) patients have identified common variants in ten genes including SMARCA2 (Koga et al., HMG, 2009). We found that the SZ-GWAS genes are part of an interacting network centered on SMARCA2 (Loe-Mie et al., HMG, 2010). Furthermore, SMARCA2 was found disrupted in SZ (Walsh et al., Science, 2008). SMARCA2 encodes the ATPase (BRM) of the SWI/SNF chromatin remodeling complex that is at the interface of genome and environmental adaptation.Taking advantage of an Algerian trio cohort of one hundred SZ patients (Benmessaoud et al., BMC Psychiatry, 2008), we replicated the association of SNP rs2296212 localized in exon 33, already shown associated in Koga study and resulting in D1546E amino acid change in the SMARCA2 protein. We studied SMARCA2 codons and found that exon 33 displays a signature of positive evolution in the primate lineage.Our working hypothesis is that the coding regions displaying positive selection are target of novel rare variants. To address this question, we sequenced two exons displaying positive evolution and one exon without evidence of positive evolution.We found (i) that rare variants are significantly in excess in SZ-patients compared to their parents (p = 0.038, Fisher test) and (ii) a higher proportion of rare variants in the primate-accelerated exons compared with the non-evolutionary exon in SZ-patients (p = 0.032, Fisher test).SMARCA2 exon sequencing and whole exome sequencing from patients harboring SNP rs2296212 common variant are under progress. Altogether, these results are expected to give new insights into the genetic architecture of SZ.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yousef Rahimi ◽  
Mohammad Reza Bihamta ◽  
Alireza Taleei ◽  
Hadi Alipour ◽  
Pär K. Ingvarsson

Abstract Background Identification of loci for agronomic traits and characterization of their genetic architecture are crucial in marker-assisted selection (MAS). Genome-wide association studies (GWAS) have increasingly been used as potent tools in identifying marker-trait associations (MTAs). The introduction of new adaptive alleles in the diverse genetic backgrounds may help to improve grain yield of old or newly developed varieties of wheat to balance supply and demand throughout the world. Landraces collected from different climate zones can be an invaluable resource for such adaptive alleles. Results GWAS was performed using a collection of 298 Iranian bread wheat varieties and landraces to explore the genetic basis of agronomic traits during 2016–2018 cropping seasons under normal (well-watered) and stressed (rain-fed) conditions. A high-quality genotyping by sequencing (GBS) dataset was obtained using either all original single nucleotide polymorphism (SNP, 10938 SNPs) or with additional imputation (46,862 SNPs) based on W7984 reference genome. The results confirm that the B genome carries the highest number of significant marker pairs in both varieties (49,880, 27.37%) and landraces (55,086, 28.99%). The strongest linkage disequilibrium (LD) between pairs of markers was observed on chromosome 2D (0.296). LD decay was lower in the D genome, compared to the A and B genomes. Association mapping under two tested environments yielded a total of 313 and 394 significant (−log10P >3) MTAs for the original and imputed SNP data sets, respectively. Gene ontology results showed that 27 and 27.5% of MTAs of SNPs in the original set were located in protein-coding regions for well-watered and rain-fed conditions, respectively. While, for the imputed data set 22.6 and 16.6% of MTAs represented in protein-coding genes for the well-watered and rain-fed conditions, respectively. Conclusions Our finding suggests that Iranian bread wheat landraces harbor valuable alleles that are adaptive under drought stress conditions. MTAs located within coding genes can be utilized in genome-based breeding of new wheat varieties. Although imputation of missing data increased the number of MTAs, the fraction of these MTAs located in coding genes were decreased across the different sub-genomes.


2020 ◽  
Vol 36 (18) ◽  
pp. 4749-4756 ◽  
Author(s):  
Alexey A Shadrin ◽  
Oleksandr Frei ◽  
Olav B Smeland ◽  
Francesco Bettella ◽  
Kevin S O'Connell ◽  
...  

Abstract Motivation Determining the relative contributions of functional genetic categories is fundamental to understanding the genetic etiology of complex human traits and diseases. Here, we present Annotation Informed-MiXeR, a likelihood-based method for estimating the number of variants influencing a phenotype and their effect sizes across different functional annotation categories of the genome using summary statistics from genome-wide association studies. Results Extensive simulations demonstrate that the model is valid for a broad range of genetic architectures. The model suggests that complex human phenotypes substantially differ in the number of causal variants, their localization in the genome and their effect sizes. Specifically, the exons of protein-coding genes harbor more than 90% of variants influencing type 2 diabetes and inflammatory bowel disease, making them good candidates for whole-exome studies. In contrast, <10% of the causal variants for schizophrenia, bipolar disorder and attention-deficit/hyperactivity disorder are located in protein-coding exons, indicating a more substantial role of regulatory mechanisms in the pathogenesis of these disorders. Availability and implementation The software is available at: https://github.com/precimed/mixer. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4724-4729 ◽  
Author(s):  
Wujuan Zhong ◽  
Cassandra N Spracklen ◽  
Karen L Mohlke ◽  
Xiaojing Zheng ◽  
Jason Fine ◽  
...  

Abstract Summary Tens of thousands of reproducibly identified GWAS (Genome-Wide Association Studies) variants, with the vast majority falling in non-coding regions resulting in no eventual protein products, call urgently for mechanistic interpretations. Although numerous methods exist, there are few, if any methods, for simultaneously testing the mediation effects of multiple correlated SNPs via some mediator (e.g. the expression of a gene in the neighborhood) on phenotypic outcome. We propose multi-SNP mediation intersection-union test (SMUT) to fill in this methodological gap. Our extensive simulations demonstrate the validity of SMUT as well as substantial, up to 92%, power gains over alternative methods. In addition, SMUT confirmed known mediators in a real dataset of Finns for plasma adiponectin level, which were missed by many alternative methods. We believe SMUT will become a useful tool to generate mechanistic hypotheses underlying GWAS variants, facilitating functional follow-up. Availability and implementation The R package SMUT is publicly available from CRAN at https://CRAN.R-project.org/package=SMUT. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document