Abstract 452: Longitudinal Visualization of Calcification Genesis and Growth in vivo : Novel Implications for Plaque Vulnerability

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Joshua D Hutcheson ◽  
Claudia Goettsch ◽  
Brett Pieper ◽  
Tan Pham ◽  
Jung Choi ◽  
...  

Background: Clinical evidence links arterial calcification and cardiovascular risk. Fibrous cap microcalcifications can promote atherosclerotic plaque failure, and large calcifications can stabilize the plaque. Therefore, calcification morphology can determine cardiovascular morbidity, but temporal patterns of calcific mineral deposition and growth remain unknown. Results: Apolipoprotein E-deficient ( Apoe-/- ) mice on an atherogenic diet develop plaque calcification. Longitudinal studies were performed using two different fluorescent calcium tracers injected intravenously into Apoe-/- mice: calcein injection following 18 weeks of atherogenic diet (n=7) and alizarin red S injection into the same mice 1 (n=4) or 3 (n=3) weeks later. Imaging green (calcein) and red (alizarin red S) fluorescence provided snapshots of aortic calcification at 18, 19, and 21 weeks. Observations within histological sections revealed green microcalcifications at 18 weeks embedded within alizarin red stained larger calcifications that were formed by 19 weeks (a). These data demonstrate that microcalcifications present at the start of calcification become the core of the larger calcifications that develop over time. Serial histological sections from aortic root to arch (b) were digitally reconstructed into 3D volumes (c) to reveal total calcific burden and localization within the aortic wall (d). Total calcification volume increased at a significant rate of 6.0x10 6 μm 3 per week (R 2 =0.99, p=0.007) and progressed from aortic arch to aortic root over time (p<0.001). Observations closely match calcification morphologies found by micro-computed tomography of human coronary arteries. Conclusion: Temporal and spatial understanding arterial calcification growth is crucial given the link between mineral morphology and cardiovascular risk, and these techniques provide a method for testing therapeutic approaches to control calcification morphology over time in situ .

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zi-Li Yu ◽  
Bin-Fang Jiao ◽  
Zu-Bing Li

Lysophosphatidic acid (LPA), a bioactive lipid molecule, has recently emerged as physiological and pathophysiological regulator in skeletal biology. Here we evaluate the effects of LPA on bone formation in vivo in murine femoral critical defect model. Primary femoral osteoblasts were isolated and treated with osteogenic induction conditional media supplemented with 20 μM LPA or LPA analogue. Mineralized nodules were visualized by Alizarin Red S staining. Forty-five C57BL/6 mice underwent unilateral osteotomy. The femoral osteotomy gap was filled with porous scaffolds of degradable chitosan/beta-tricalcium phosphate containing PBS, LPA, or LPA analogue. 2, 5, and 10 weeks after surgery, mice were sacrificed and femurs were harvested and prepared for Micro-Computed Tomography (Micro-CT) and histological analysis. Alizarin Red S staining showed that LPA and LPA analogue significantly enhanced the mineral deposition in osteoblasts. Micro-CT 3D reconstruction images and HE staining revealed that significantly more newly formed bone in osteotomy was treated with LPA analogue when compared to control and LPA group, which was verified by histological analysis and biomechanical characterization testing. In summary, our study demonstrated that although LPA promotes mineralized matrix formation in vitro, the locally administrated LPA was not effective in promoting bone formation in vivo. And bone formation was enhanced by LPA analogue, administrated locally in vivo. LPA analogue was a potent stimulating factor for bone formation in vivo due to its excellent stability.


2006 ◽  
Vol 14 ◽  
pp. S145-S146
Author(s):  
S.M. Botter ◽  
Y.H. Sniekers ◽  
J.H. Waarsing ◽  
G.J. van Osch ◽  
J.A. Verhaar ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
A. Bensimon-Brito ◽  
J. Cardeira ◽  
G. Dionísio ◽  
A. Huysseune ◽  
M. L. Cancela ◽  
...  

PEDIATRICS ◽  
1966 ◽  
Vol 37 (5) ◽  
pp. 866-866
Author(s):  
LEONARD T. SWANSON

Until the appearance of this text, little documented evidence of antenatal dental morphology was available. The authors, drawing on the unique collection of fetal material at the University of Pittsburgh, have carried out an unusually thorough investigation with the data well supported. Their study of ontogenetic development is based on whole embryonic crowns stained with alizarin red S. which provided specimens that could readily be examined morphologically and eliminated the tedious reconstruction from serial histological sections.


1964 ◽  
Vol 46 (3) ◽  
pp. 493-508 ◽  
Author(s):  
WILLIAM H. HARRIS ◽  
DOROTHY F. TRAVIS ◽  
ULF FRIBERG ◽  
ERIC RADIN

Author(s):  
Adrienne F. O. Williams ◽  
Matthew B. A. McCullough

Magnesium (Mg) and its alloys are attractive orthopedic biomaterials because of their degradability and mechanical properties, which are similar to bone’s. Characterizing the mechanical changes and interactions of these promising degradable biomaterials and the host environment (bone) is essential to their success in orthopedic devices. The objective of this study was to develop a protocol to evaluate in vivo biodegradable Mg-alloy screws and surrounding new and cancellous bone in rabbit femurs over time, using high resolution micro-computed tomography (micro-CT) images and the finite element method. Micro-CT was used to visually evaluate bone remodeling and degradation of Mg-alloy screws that were implanted in rabbit femoral condyles for 2, 4, 12, 24, 36 and 52 weeks. Over time, the degradation product around the device and the remainder of the intact core was observed. Scans were segmented into bone, degradation/corrosion products and non-degraded device, then reconstructed into 3D volumes. These volumes were meshed and assigned material properties based on CT data. The meshed volumes were exported to finite element software and analyzed in a virtual environment. Several foundational observations were made about animal modeling of in vivo degrading magnesium devices with a micro-CT to FEA protocol.


2013 ◽  
Vol 10 ◽  
Author(s):  
Hikari Maeda ◽  
Tadafumi Kawamoto ◽  
Hidehiro Kato

We attempted to settle the potential problems of bias caused by too soft earplugs and poor formation of the growth layers in age readings of common minke whales. Thus, we examined the feasibility of a new technique of incorporating gelatin in order to collect earplugs for age assessment. Frozen sectioning and histology of the earplug core were also used as methods to improve age estimation. Earplugs were collected by filling the space in the external auditory meatus with gelatin, hardening the gelatin, earplug and its fragments, by spraying with cooling gas, and removing the earplug embedded in gelatin. In 174 trials with common minke whales in the Western North Pacific of coastal waters of Japan in 2007–2009, it was revealed that embedding earplugs with gelatin minimized breakage and protected the neonatal line (NL). This method was particularly effective in younger animals. As a result, the readability was improved. We also examined the histological sections, which were sliced using the Kawamoto specialized frozen sectioning technique, and stained them separately with toluidine blue, haematoxylin and eosin, Sudan III, Sudan VII, and alizarin red S to display a clearer core surface image of the growth layers. The histological sections stained with alizarin red S provided the clearest images, in which we could easily identify both dark and pale laminations. This suggested a close relationship with the seasonal changes in calcium intake from feeding. Earlier age estimation methods focused on fat content in the growth layers; however, we found potential for an improvement in the readability of unclear growth layers when focusing on calcium.


2020 ◽  
Vol 33 ◽  
pp. 1
Author(s):  
Jean-Marie Caraguel ◽  
Thomas Barreau ◽  
Sarah Brown-Vuillemin ◽  
Samuel P. Iglésias

Age determination for stock assessments and conservation of cartilaginous fishes is mainly obtained by counting the annual growth bands in vertebrae. Recent studies show numerous inconsistencies and the need for systematic validation. We assessed the effectiveness of the fluorochrome alizarin red S, a common skeleton vital marker used as a time stamp for teleost fishes, on chondrichthyan. Twenty-five captive small-spotted catsharks (Scyliorhinus canicula) were marked by alizarin red S intraperitoneal injections. The fluorochrome produced a wide fluorescent mark on sectioned vertebral centra of all injected fish. Alizarin red S did not have a deleterious effect on growth during three months monitoring. The marks obtained remained stable in vivo for more than four years after injections and were resistant to fading during the observation under the microscope excitation light. Our results suggest that alizarin red S is an effective tool for long time vital marking of chondrichthyans.


1993 ◽  
Vol 69 (01) ◽  
pp. 021-024 ◽  
Author(s):  
Shawn Tinlin ◽  
Sandra Webster ◽  
Alan R Giles

SummaryThe development of inhibitors to factor VIII in patients with haemophilia A remains as a serious complication of replacement therapy. An apparently analogous condition has been described in a canine model of haemophilia A (Giles et al., Blood 1984; 63:451). These animals and their relatives have now been followed for 10 years. The observation that the propensity for inhibitor development was not related to the ancestral factor VIII gene has been confirmed by the demonstration of vertical transmission through three generations of the segment of the family related to a normal (non-carrier) female that was introduced for breeding purposes. Haemophilic animals unrelated to this animal have not developed functionally significant factor VIII inhibitors despite intensive factor VIII replacement. Two animals have shown occasional laboratory evidence of factor VIII inhibition but this has not been translated into clinical significant inhibition in vivo as assessed by clinical response and F.VIII recovery and survival characteristics. Substantial heterogeneity of inhibitor expression both in vitro and in vivo has been observed between animals and in individual animals over time. Spontaneous loss of inhibitors has been observed without any therapies designed to induce tolerance, etc., being instituted. There is also phenotypic evidence of polyclonality of the immune response with variable expression over time in a given animal. These observations may have relevance to the human condition both in determining the pathogenetic factors involved in this condition and in highlighting the heterogeneity of its expression which suggests the need for caution in the interpretation of the outcome of interventions designed to modulate inhibitor activity.


Sign in / Sign up

Export Citation Format

Share Document