Abstract 15813: Loss-of-Function Mutation in Toll-Like Receptor 4 Partially Protects Against Peripheral and Cardiac Insulin Resistance During a Long-Term High-Fat Diet

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ellen Jackson ◽  
Elizabeth Rendina-Ruedy ◽  
Matt Priest ◽  
Brenda Smith ◽  
Veronique Lacombe

Diabetes mellitus is an epidemic disease characterized by alterations in glucose transport, which is tightly regulated by a family of specialized proteins called the glucose transporters (GLUTs). Although diabetic cardiomyopathy is a common complication in diabetic patients, its pathogenesis is still not well understood. Toll-like receptor (TLR) 4, which plays a central role in pathogen recognition by the innate immune system, may also play a critical role in linking inflammation and metabolic disease. We hypothesized that TLR4 activation triggers cardiac insulin resistance. We used mice with a loss-of function mutation in TLR4 (C3H/HeJ) and age-matched wild-type (WT, C57BL/6N) mice (n=8/group) to investigate how feeding a high-fat diet (HFD, 60% kcal from fat) for 16 weeks affected whole-body and cardiac glucose metabolism. After 16 weeks, WT mice fed a HFD were obese and developed hyperglycemia and insulin resistance compared to WT mice on a control diet (10% kcal from fat). The C3H/HeJ mice were partially protected against HFD-induced obesity and insulin resistance. In the heart, WT mice fed a HFD had a 30% decrease (P<0.05) in GLUT4 protein content as measured by Western Blot of cardiac crude membrane protein extracts. In contrast, the loss-of-function point mutation in TLR4 partially rescued cardiac GLUT4 content in the face of a HFD. Interestingly, there was a 40% increase (P<0.05) in the novel GLUT isoform, GLUT8, in the heart when mice of either genotype were fed a HFD. Additionally, GLUT4 protein content was negatively (P<0.05) correlated with GLUT8 content in the myocardium, suggesting that GLUT8 may act as a compensatory mechanism in the face of HFD-induced GLUT4 downregulation. Phosphorylated Akt, a key protein of the insulin signaling pathway, was positively (P<0.05) correlated with GLUT4 content, while the basal/inactive form was negatively correlated. In conclusion, these data suggest that activation of TLR4 activation during diabetes and obesity alters glucose transport by an Akt mechanism, and as such is a pathogenic factor during peripheral and cardiac insulin resistance. Overall, TLR4 appears to be a key modulator in the cross-talk between inflammatory and metabolic pathways, as well as a potential therapeutic target for diabetes.

Endocrinology ◽  
2013 ◽  
Vol 154 (4) ◽  
pp. 1444-1453 ◽  
Author(s):  
Pierre-Marie Badin ◽  
Isabelle K. Vila ◽  
Katie Louche ◽  
Aline Mairal ◽  
Marie-Adeline Marques ◽  
...  

Abstract Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cϵ membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P &lt; .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (−37%, P &lt; .05) and AS160 Thr642 (−47%, P &lt;.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice.


Diabetes ◽  
1997 ◽  
Vol 46 (11) ◽  
pp. 1761-1767 ◽  
Author(s):  
D. H. Han ◽  
P. A. Hansen ◽  
H. H. Host ◽  
J. O. Holloszy

1997 ◽  
Vol 272 (1) ◽  
pp. E147-E154 ◽  
Author(s):  
A. P. Rocchini ◽  
P. Marker ◽  
T. Cervenka

The current study evaluated both the time course of insulin resistance associated with feeding dogs a high-fat diet and the relationship between the development of insulin resistance and the increase in blood pressure that also occurs. Twelve adult mongrel dogs were chronically instrumented and randomly assigned to either a control diet group (n = 4) or a high-fat diet group (n = 8). Insulin resistance was assessed by a weekly, single-dose (2 mU.kg-1.min-1) euglycemic-hyperinsulinemic clamp on all dogs. Feeding dogs a high-fat diet was associated with a 3.7 +/- 0.5 kg increase in body weight, a 20 +/- 4 mmHg increase in mean blood pressure, a reduction in insulin-mediated glucose uptake [(in mumol-kg-1.min-1) decreasing from 72 +/- 6 before to 49 +/- 7 at 1 wk, 29 +/- 3 at 3 wk, and 30 +/- 2 at 6 wk of the high-fat diet, P < 0.01]. and a reduced insulin-mediated increase in cardiac output. In eight dogs (4 high fat and 4 control), the dose-response relationship of insulin-induced glucose uptake also was studied. The whole body glucose uptake dose-response curve was shifted to the right, and the rate of maximal whole body glucose uptake was significantly decreased (P < 0.001). Finally, we observed a direct relationship between the high-fat diet-induced weekly increase in mean arterial pressure and the degree to which insulin resistance developed. In summary, the current study documents that feeding dogs a high-fat diet causes the rapid development of insulin resistance that is the result of both a reduced sensitivity and a reduced responsiveness to insulin.


2015 ◽  
Vol 309 (3) ◽  
pp. R304-R313 ◽  
Author(s):  
Ryan P. McMillan ◽  
Yaru Wu ◽  
Kevin Voelker ◽  
Gabrielle Fundaro ◽  
John Kavanaugh ◽  
...  

Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6–8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding.


2018 ◽  
Vol 314 (3) ◽  
pp. E251-E265 ◽  
Author(s):  
Lewin Small ◽  
Amanda E. Brandon ◽  
Nigel Turner ◽  
Gregory J. Cooney

For over half a century, researchers have been feeding different diets to rodents to examine the effects of macronutrients on whole body and tissue insulin action. During this period, the number of different diets and the source of macronutrients employed have grown dramatically. Because of the large heterogeneity in both the source and percentage of different macronutrients used for studies, it is not surprising that different high-calorie diets do not produce the same changes in insulin action. Despite this, diverse high-calorie diets continue to be employed in an attempt to generate a “generic” insulin resistance. The high-fat diet in particular varies greatly between studies with regard to the source, complexity, and ratio of dietary fat, carbohydrate, and protein. This review examines the range of rodent dietary models and methods for assessing insulin action. In almost all studies reviewed, rodents fed diets that had more than 45% of dietary energy as fat or simple carbohydrates had reduced whole body insulin action compared with chow. However, different high-calorie diets produced significantly different effects in liver, muscle, and whole body insulin action when insulin action was measured by the hyperinsulinemic-euglycemic clamp method. Rodent dietary models remain an important tool for exploring potential mechanisms of insulin resistance, but more attention needs to be given to the total macronutrient content and composition when interpreting dietary effects on insulin action.


2012 ◽  
Vol 302 (5) ◽  
pp. E532-E539 ◽  
Author(s):  
Haihong Zong ◽  
Michal Armoni ◽  
Chava Harel ◽  
Eddy Karnieli ◽  
Jeffrey E. Pessin

Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic clamps demonstrated a marked protection against high-fat diet-induced insulin resistance in CYP2E1 knockout mice, with enhanced adipose tissue glucose uptake and insulin suppression of hepatic glucose output. In parallel, adipose tissue was protected against high-fat diet-induced proinflammatory cytokine production. Taken together, these data demonstrate that the CYP2E1 deletion protects mice against high-fat diet-induced insulin resistance with improved glucose homeostasis in vivo.


2020 ◽  
Author(s):  
Ada Admin ◽  
Anne-Marie Lundsgaard ◽  
Andreas M. Fritzen ◽  
Kim. A. Sjøberg ◽  
Maximilian Kleinert ◽  
...  

Medium-chain fatty acids (MCFAs) have in rodents been shown to have protective effects on glucose homeostasis during high-fat overfeeding. In this study, we investigated whether dietary MCFAs protect against insulin resistance induced by a hypercaloric high-fat diet in humans. Healthy, lean men ingested a eucaloric control diet and a three-day hypercaloric high-fat diet (+75% energy, 81-83E% fat) in randomized order. For one group (n=8), the high-fat diet was enriched with saturated long-chain FAs (LCSFA-HFD), while the other group (n=9) ingested a matched diet, but with ~30 g (5E%) saturated MCFAs (MCSFA-HFD) in substitution for a corresponding fraction of the saturated LCFAs. A hyperinsulinemic-euglycemic clamp with femoral arteriovenous balance and glucose tracer was applied after the control and hypercaloric diets. In LCSFA-HFD, whole body insulin sensitivity and peripheral insulin-stimulated glucose disposal were reduced. These impairments were prevented in MCSFA-HFD, accompanied by increased basal FA oxidation, maintained glucose metabolic flexibility, increased non-oxidative glucose disposal related to lower starting glycogen content and increased glycogen synthase activity, together with increased muscle lactate production. In conclusion, substitution of a small amount of dietary LCFAs with MCFAs rescues insulin action in conditions of lipid-induced energy excess.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1059
Author(s):  
Si Fan ◽  
Samnhita Raychaudhuri ◽  
Olivia Kraus ◽  
Md Shahinozzaman ◽  
Leila Lofti ◽  
...  

The shoot of Urtica dioica is used in several cultures as a vegetable or herb. However, not much has been studied about the potential of this plant when consumed as a whole food/vegetable rather than an extract for dietary supplements. In a 12-week dietary intervention study, we tested the effect of U. dioica vegetable on high fat diet induced obesity and insulin resistance in C57BL/6J mice. Mice were fed ad libitum with isocaloric diets containing 10% fat or 45% fat with or without U. dioica. The diet supplemented with U. dioica attenuated high fat diet induced weight gain (p < 0.005; n = 9), fat accumulation in adipose tissue (p < 0.005; n = 9), and whole-body insulin resistance (HOMA-IR index) (p < 0.001; n = 9). Analysis of gene expression in skeletal muscle showed no effect on the constituents of the insulin signaling pathway (AKT, IRS proteins, PI3K, GLUT4, and insulin receptor). Notable genes that impact lipid or glucose metabolism and whose expression was changed by U. dioica include fasting induced adipocyte factor (FIAF) in adipose and skeletal muscle, peroxisome proliferator-activated receptor-α (Ppar-α) and forkhead box protein (FOXO1) in muscle and liver, and Carnitine palmitoyltransferase I (Cpt1) in liver (p < 0.01). We conclude that U. dioica vegetable protects against diet induced obesity through mechanisms involving lipid accumulation and glucose metabolism in skeletal muscle, liver, and adipose tissue.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Lakshmi Arivazhagan ◽  
Henry Ruiz ◽  
Robin Wilson ◽  
Laura Frye ◽  
Ravichandran Ramasamy ◽  
...  

Introduction: Obesity is a major global health problem, with over one third of adults in the US classified as obese. Obesity often leads to a state of insulin resistance (IR), type 2 diabetes (T2D) and its complications. We previously showed that the receptor for advanced glycation end products (RAGE) and its ligands contribute to the pathogenesis of obesity and IR, as whole body and adipocyte-specific Ager (gene encoding RAGE) deleted mice fed a high fat diet (HFD) were significantly protected from weight gain and IR. Here, we hypothesize that myeloid RAGE contributed to IR upon HFD feeding. Methods: We generated mice with myeloid-specific (MDR) LyzMCre(+/+).Ager flox/flox and adipocyte and myeloid-specific (Double Knockouts) AdipoQCre(-/+)LyzMCre(+/+).Ager flox/flox deletion of Ager and LysMCre mice were used as control. Mice were fed either standard chow (LFD) or HFD (60% kcal/fat) for 3 months starting at age 6 weeks. Mice were assessed for body mass and composition, glucose and insulin sensitivity and whole body glucose metabolism by hyperinsulinemic-euglycemic clamp studies. Results: After 3 months HFD, there were no significant differences in body mass, body composition, food intake, energy expenditure and physical activity of the MDR mice vs. controls. Similar findings were observed in mice fed LFD. However, surprisingly, in HFD-fed mice, insulin tolerance tests and hyperinsulinemic-euglycemic clamp studies showed decreased insulin sensitivity and insulin action in the MDR vs. control mice, indicating that the MDR mice were more insulin resistant. The Double Knockout (myeloid/adipocyte) Cre (+) mice were more glucose tolerant and insulin sensitive compared to MDR mice, showing that deletion of Ager in the adipocytes rescued the adverse effects of Ager deletion in myeloid cells. Conclusions: Myeloid Ager protects from IR in mice fed HFD. Furthermore, in MDR mice, concomitant adipocyte-specific deletion of Ager rescues these mice from IR and, at the same time, reduces HFD-induced adiposity. The mechanisms underlying these findings are under active investigation.


Sign in / Sign up

Export Citation Format

Share Document